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Abstract 

In this study, we modelled and analyzed hotspot events recorded by MODIS satellite during the last nineteen 
years in the Mexican state of Oaxaca using a hierarchical Poisson Bayesian model. Our approach models the 
number of forest fires in space, time and the interaction of both and considers environmental variables. 
According to our results, some environmental variables can explain some of the observed Spatio-temporal 
variations, such as the temperature of the driest quarter, average wind speed, enhanced vegetation index 
values, and the occurrence of El Niño-Southern Oscillation. The analysis identified two spatial cluster regions: 
the first covers the Sierra Juárez up to the Isthmus of Tehuantepec, and the second covers the Sierra del Sur. 
Additionally, the temporal term in our model suggests that the number of events has increased by 
approximately 42.2 % in the last two decades. In conclusion, our results prompt that forest fires increased not 
only spatially but also in temporarily. These findings are alarm signals because if the trend continues, hundreds 
of new hectares of forest and its biodiversity will be threatened in the following decades, affecting too economic 
activities and people's health living in rural and urban areas of Oaxaca. This study can be a primary analysis in 
designing more efficient fire management programs to mitigate the impacts of altered fire regimes in Oaxaca. 

Keywords: Biodiversity loss, carbon emissions, hotspots, satellite observation, spatial clustering, wildfires. 

Resumen 

En este estudio, se modelan y analizan los eventos de incendios forestales registrados en los últimos 19 años 
por el satélite de observación MODIS en el estado de Oaxaca; para ello, se utilizó un modelo Poisson jerárquico 
bayesiano, el cual modela el número de incendios forestales espacial y temporalmente, así como la interacción 
de ambos. De acuerdo con los resultados, algunas variables ambientales como la temperatura del trimestre más 
seco, la velocidad media del viento, el índice de vegetación mejorado y la ocurrencia del fenómeno El Niño-
Oscilación del Sur, explican parte de la variabilidad espacio-temporal observada. Derivado del análisis, se 
identificaron dos grupos espaciales: el primero cubre desde la Sierra Juárez hasta el Istmo de Tehuantepec, y el 
segundo abarca la Sierra Sur. Adicionalmente, el término temporal sugiere que el número de eventos se ha 
incrementado en aproximadamente 42.2 % en las últimas dos décadas. Los resultados indican que los incendios 
forestales se han incrementado tanto espacial como temporalmente. Estos hallazgos son señales de alarma, 
dado que si la tendencia continua, en las siguientes décadas cientos de nuevas hectáreas de bosque y su 
biodiversidad serán amenazadas a causa de los regímenes de fuego alterados, que también afectará las 
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actividades económicas y la salud de los habitantes de las áreas rurales y urbanas del estado. La información 
generada puede ser un punto de partida en el diseño de programas más eficientes para mitigar el impacto de 
los incendios forestales en Oaxaca. 

Palabras clave: Pérdida de biodiversidad, emisión de carbono, focos de calor, observación satelital, 
agrupamiento espacial, incendios forestales. 

 

 

Introduction 

 

 

Wildfires are one of the most critical factors that have shaped and changed our 

planet's ecosystem and biodiversity, starting millions of years ago. In many regions 

of the world, those events are caused by a combination of natural sources such as 

lightning and the availability of forest fire fuel caused by marked dry seasons in 

certain months of the year. For example, 40 % of the vegetation types in Mexico are 

fire-maintained (Rodríguez, 2014). In some tropical forests, fires occur every dry 

season and make tree species exhibit adaptive traits to fires, playing an ecological 

role (Nasi et al., 2002). Even more, humans are responsible for between 75 % to 96 

% of them, directly or indirectly, deliberately or through carelessness (Hirschberger, 

2016). 

The expression of fire as an ecological factor in forest ecosystems is through fire regimes 

(the pattern of repeated fires expressed as frequency, season, type, severity, and areal 

extent in a landscape) (Scott et al., 2014). It is estimated that 61 % of the ecoregions of 

the planet have degraded or very degraded fire regimes, so although fire plays a crucial 

role in maintaining many ecosystems, because of human actions, fire is behaving differently 

today than at any other time in human history (Shlisky et al., 2007). On a global scale, the 

alteration of fire regimes is a significant source of greenhouse gas emissions. At a regional 

level, fires impact biomass stocks, the hydrological cycle, and people's health and may 

significantly affect the biodiversity in forests. According to Nasi et al. (2002), in the latter 

part of the twentieth century, changes in the human-fire dynamic and an increase in El 
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Niño-Southern Oscillation frequency have led to a situation where fires are now a significant 

threat to many forests and the biodiversity therein. El Niño anomaly particularly leads to 

hot and dry conditions over many fire-prone regions globally, which can increase burned 

area (Burton et al., 2020). From people's health point of view, bushfire smoke can affect 

millions of people, constituting a major public health problem during bushfire smoke 

episodes (Chen et al., 2006; Dennekamp and Abramson, 2011). 

Technological advancements make it possible to monitor huge areas through extensive satellite 

data. One application is the detection of active fires (hotspots), which is commonly based on 

the middle infrared (MIR) spectral region (3-5 μm) that implies a spectral radiance at the 

temperature of burning vegetation (500 to 1 000 K), which is higher than average Earth 

temperatures (300 K), efficiently discriminating the active fires (Chuvieco, 2008). The most 

important sensor is the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard 

the Aqua and Terra satellites, which identifies "fire pixels" of 1 km2 in size (on average). 

According to Müller et al. (2013), the size of detectable fires depends on fire temperature, 

area, vegetation cover and sensor viewing angle. 

Observation and record of hotspots also allow researchers to study, analyze and answer 

scientific questions using Spatio-temporal data. The available data does not support a 

general increase in the burned area or global fire severity. Still, there is evidence, based on 

some regional scales, that there has been an increase in the number of events and the total 

area burned (Doerr and Santín, 2016). Therefore, it is plausible to analyze and model 

wildfire events regionally instead of globally. In Mexico, some research efforts have focused 

on understanding different aspects of wildfires from a causation (Avila-Flores et al., 2010; 

Antonio and Ellis, 2015; Pompa-García et al., 2018; Zúñiga-Vásquez and Pompa-García, 

2019) and prediction point of view (Perez-Verdin et al., 2014; Ibarra-Montoya and Huerta-

Martínez, 2016; Galván and Magaña, 2020; Monjarás-Vega et al., 2020; Ruíz-García et al., 

2022). 

Oaxaca is the most biodiverse state in Mexico. It harbors almost half the plant species and 

vegetation types in the country, as well as 40 % of mammal species, 63 % of birds, 26 % 

of reptiles and 23 % of river fish reported for Mexico (Oviedo, 2002). Oaxaca is located in 
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southwestern Mexico, bordered by the states of Puebla, Veracruz, Chiapas and Guerrero, 

with the Pacific Ocean to the south (Figure 1). The state is crossed by tropical dry forests 

harboring up to 70 % of plant species living there as endemic. According to the results 

obtained based on data from 2000 to 2012, Oaxaca is in the top five states with higher 

emissions of black carbon (4 557-6 309 t year-1) and organic carbon (48 441-70 663 t year-

1) from wildfires in Mexico (Cruz et al., 2014). In the last technical report from Conafor, in 

2019, Oaxaca figured in the top ten states with higher wildfire events and was in the top 

five with the greatest damaged surface (Conafor, 2020). 

 

 

Figure 1. Geographical location of Oaxaca state in Mexico. 

 

In this study, following the recommendation of Doerr and Santín (2016) about the need to 

conduct studies on local and regional scales and given the high biodiversity of Oaxaca, we 

analyzed the hotspot events retrospectively in the last 19 years (2001-2019) across the 

https://en.wikipedia.org/wiki/Puebla
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state of Oaxaca, Mexico. Our main goal was to explore and characterize the Spatio-

temporal pattern of hotspot occurrence to investigate if hotspot patterns vary spatially and 

temporally across the state or whether the events are randomly dispersed in space and 

time. We think that hotspots are not spatially randomly distributed in our study zone. 

Instead, clusters are formed and can be partly explained as a function of some 

environmental variables such as temperature, precipitation, the slope of the terrain, wind 

speed and the type of vegetation. We also hypothesized a significant trend in the hotspots 

occurrence in space and time. Many studies have been carried out on forest fires in Mexico. 

Still, there has not been a unified approach that models spatially and temporarily and 

integrates and quantifies some environmental variables' effects on forest fire risk. Our 

approach can be extended in the future to include variables related to human activities that 

influence the hotspots distribution. As far as we know, this project is also the first to 

analyze hotspot data from two decades of satellite records in Oaxaca. 

 

 

Material and Methods 

 

 

Data and its general description 

 

 

The hotspots database used in this analysis was obtained from the "Fire Information 

for Resource Management System-FIRMS" (NASA, 2020c). The records represent 

the center of a 1 km2 pixel containing one or more daily fires recorded from January 

2001 to December 2019 over the state of Oaxaca, Mexico. We discarded records 

with a low confidence level (lower than 30 %), and all events falling into the area 
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that comprises the Pacific Refinery (located in Tehuantepec, Oaxaca, Mexico) were 

considered false alarms. The polygon shapefile delimiting the state of Oaxaca was 

downloaded from the Conabio geo-intelligence portal (Conabio, 2020). Each cell 

divided the state into a regular lattice of 10 km2. The total number of hotspots' new 

records (not repeated) were registered in each cell for each year. This data for all 

the State and the nineteenth years constitute the Spatio-temporal data that were 

modelled through an appropriate statistical model that we discuss later. 

Additionally, a database of standardised environmental (raw values minus the average and 

divided by its corresponding standard deviation) variables was generated at 1 km2 spatial 

resolution. This database contains values of the Mean Temperature of the Driest Quarter 

(TempDQ, °C), Mean Precipitation of the Driest Quarter (PpDQ, mm), Mean Wind Speed 

(WindSpeed, m s-1), Slope (decimal degrees), Mean values of Enhanced Vegetation Index 

(EVI, dimensionless), and two indicator variables representing the occurrence of El Niño-

Southern Oscillation and its counterpart La Niña in the previous year. Climatic variables 

were downloaded from the WorldClim-2 website (Fick and Hijmans, 2017) and correspond 

to mean values from historical data, while Slope was obtained from the Conabio geo-

intelligence portal (Conabio, 2020). Average values of NDVI were calculated from raw data 

downloaded from the EarthData website (NASA, 2020b) through the AppEEARS application 

(NASA, 2020a). 

 

 

Statistical model 

 

 

We use a Poisson hierarchical model used for spatial lattice data, which has been used in 

similar applications (Boadi et al., 2015; Costafreda, 2017), where the response variable  

is a random aggregate value (count) over areal unit  in time . In our case, the study 

region was partitioned into  cells, and data are available for  
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years. Let  be the random variable denoting the number of hotspot/fire occurrences in 

area  at time . Given that realization of  can take values  (count random 

variable), the first level of a hierarchy is: 

 

     (1) 

 

Where: 

 = Stands for a Poisson distribution wit  as the rate parameter, which denotes 

the expected number of events in cell  at time  

 

The second level of hierarchy links predictors (that account for fixed effects, spatial 

components, time trend and time-space interaction) to  corresponds to the 

function: 

 

     (2) 

 

Where: 

 = Represent the overall log-scale mean hotspot occurrences 

 = Vector of fixed effects associated with environmental-variates 
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 = Values of TempDQ, PpDQ, WindSpeed, Slope, EVI, and the two dummy 

variables denoting the occurrence of El Niño and La Niña 

 

The purely spatial random effects are given by  and , a structured spatial and an 

unstructured spatial effect, respectively. The exponential sum, , 

denotes the expected number of events per year for each cell explained only by 

spatial effects.  and , represent a structured spatial trend and an unstructured 

spatial residual, respectively. Finally,  accounts for space-time interaction. 

For practical purposes, we fit the model (Equations 1 and 2) with the Bayesian statistical 

approach using the Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009) in 

the R programming language (R Core Team, 2019). Therefore, prior (third level of the 

hierarchy) distributions are needed for all model parameters to complete the specification of 

the above models. For the overall log-scale mean, we assumed a non-informative uniform 

prior, i.e. , and for each element of , a diffuse Gaussian distribution with zero 

mean and arbitrary significant variance , i.e. , to assign to  

and  non-informative diffuse priors. The other parameters assumed to have normal 

distributions are the temporal effect , the unstructured spatial heterogeneity 

effect: , and the space-time interaction effect: . For the  the 

effect, we used the intrinsic conditional autoregressive model (iCAR) (Besag, 1974), which 

represents the spatial dependence between nearby areas. iCAR is expressed as: 
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     (3) 

 

Where: 

 and .  is the number of cells that are first-

order neighbors of area  (cells  and  are first orders neighbors if they share a common 

boundary; see Banerjee et al., 2015), and the  weights are constants and specified as 

 if cell  and cell  are neighbors, and  otherwise. The variance parameter  

controls the amount of variability of the random effects and is estimated from the data. 

 

The structured temporal effect is dynamically modelled using a 2nd order random walk (RW-

2): . RW-2 is the easiest way to model non-linearities in the 

temporal trend. For the variance hyper-parameters , we assigned independent 

Inverse-gamma distributions, . Values of  and  have been suggested as 

a sensible choice by Blangiardo and Cameletti (2015). 

 

 

Results and Discussion 

 

 

Table 1 presents the posterior mean, the posterior standard deviation and the 

posterior 95 % credible interval of each element of ( ) and . Only four of seven 

environmental variates had associated parameters considered statistically significant 

(those whose intervals do not contain zero) for explaining the log rate of hotspot 
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events. These were parameters associated with TempDQ and EVI variables, with 

positive effects and negative signs with WindSpeed and El Niño. Parameters are 

easily interpreted on the natural scale, i.e., . For example, an increase of one 

standardized unit of TempDQ or one unit of EVI implies an increase of 78.1 % 

((1.781-1) 100)) and 34.9 % in the risk of having hotspot events, respectively. 

Other studies in Mexico also documented that temperature increases the risk of 

forest fires (Perez-Verdin et al., 2014; Antonio and Ellis, 2015). On the other hand, 

average EVI values give us information about biomass stock potentially available as 

forest fuel in dry seasons; therefore, as EVI values increase, the danger effect of 

forest fires increases. 

 

Table 1. Summary statistics for fixed effects. 

Environmental 
variable 

Parameter Mean 
Standard 
deviation 

95 % credible 
interval 

Exp (mean) 

Intercept  0.153 0.149 [-0.192, 0.41] 1.165 

TempDQ*  0.577 0.122 [0.337, 0.817] 1.781 

PpDQ  -0.008 0.126 [-0.255, 0.238] 0.992 

Slope  0.013 0.061 [-0.106, 0.132] 1.013 

WindSped*  -0.348 0.122 [-0.588,-0.108] 0.706 

EVI*  0.299 0.062 [0.178,0.419] 1.349 

Niño*  -0.523 0.186 [-0.836,-0.088] 0.593 

Niña  -0.248 0.193 [-0.591,0.184] 0.78 

*Statistically significant variables. 

 

In contrast to what is expected, an increase of one standardized unit in WindSpeed 

gives 29.4 % ((1-0.706) 100)) less risk of experimenting with a wildfire event. A 

possible explanation could be that wind is a fire danger factor, i.e. as its speed 
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increases, the fire propagation rate also increases. Still, wind only causes fire 

directly when strong winds generate secondary fires during wildfires. Also, wind 

speed may interact with other variables not accounted for in this analysis. The effect 

associated with El Niño requires special attention. When the El Niño phenomenon is 

observed in the previous year, the risk of hotspot occurrence is reduced by about 

40.7 %. This may be explained by the fact that El Niño causes more precipitation in 

Mexico in the winter (Bravo-Cabrera et al., 2017). Therefore in the dry season 

(spring of the following year), there is less dry vegetable fuel. 

Figure 2 depicts the posterior mode of the main spatial effect . Two 

clusters can be formed with the highest values of the main spatial effect. The first 

one is caused by a band from the northwest to the southeast in Oaxaca State, 

beginning in the Sierra Mazateca, going through the Sierra Juárez close to the center 

of the state, and extending up to the Sierra Mixe and the Isthmus of Tehuantepec. It 

is important to note that this area is the end of the Sierra Madre Oriental that crosses 

all of the Mexican Republic. At this latitude, it is conformed by tropical dry forest 

harboring up to 70 % of plant species living there as endemic. The highest values of 

the main spatial effect ( ) is likely due to anthropogenic effects (slash-and-

burn practices, cattle raising, illegal forest exploitation, and in general, land-use 

changes), as suggested by Galván and Magaña (2020), and not due to environmental 

variables. Some cells with high values of  close to Veracruz state (lower area of the 

Papaloapan river basin) are explained by extensive agriculture and cattle raising. In 

the neighboring state of Chiapas, the altered tree composition of many tropical 

deciduous forests results from centuries of forest fires and cattle and goat raising 

(Miranda, 2015). 
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Figure 2. Posterior mode of the spatial main effect  of hotspot events 

in Oaxaca, Mexico. 

 

Many original tropical deciduous forests in Mexico are a mix of fire-adapted and fire-sensitive 

tree species, and fire tends to select the former and eliminate the latter (Rodríguez et al., 

2019). It is important to note that the Chimalapas jungle, a rainforest region with high 

biodiversity, has low spatial effect values, although the neighboring areas exhibit high values. 

The low values can probably be explained by the conservation efforts of the native indigenous 

population in that region (in 1998 -an extreme fire season in Mexico- this region was severely 

affected by extensive wildfires). 

The second cluster goes from the southwest (adjoining the state of Guerrero) to the 

southeast of the state, an area that comprises the Sierra Madre del Sur. This region is 

made up of dry, warm forests and temperate mountain ranges, and probably high values of 
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the main spatial effect are also due to the anthropogenic impacts. Both clusters identified in 

this study were also identified by Zúñiga-Vásquez et al. (2017), integrating data for the 

whole Mexican territory. 

Table 2 presents summary statistics such as the mean, standard deviation, and 95 % credible 

interval for hyper-parameters. Computing , tells us that 99.98 % of 

the observed variation can be explained by the structural, spatial term . 

 

Table 2. Summary statistics for hyper-parameters. 

Hyper-
parameter 

Mean 
Standard 
deviation 

95 % credible 
interval 

 2.161 0.078 [2.039,2.339] 

 0.03 0.017 [0.012,0.075] 

 0.114 0.067 [0.025,0.277] 

 0.216 0.087 [0.108,0.443] 

 0.762 0.007 [0.748,0.776] 

 

Figures 3a and 3b show the posterior mode of structured  and unstructured  time 

effects, respectively, reported on the natural scale, i.e. exponentiating. We also reported 

the 95 % highest posterior density interval (HPDI) for both quantities. Figure 3a shows that 

the structured effects from 2001 to 2005 increased. After that, the trend was stable for ten 

years, marginally declining, but from 2015 to 2019, a new incremental trend was visible. 

The increment from 2001 to 2019 of the structured effects was 42.2 %. It would be 

essential to confirm this alarm signal in the future; we know that climate change and global 

warming are affecting wildfire patterns in some regions, perhaps locally incrementing the 

occurrence throughout space and time. According to projections of Senande-Rivera et al. 

(2022), the global area with frequent fire-prone conditions will increase by 29 % (25 % in 
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temperate zones) at the end of the 21st century. An effect of the increase in forest fires in 

the future may be to raise the loss of cover in forest areas altering the hydrological 

processes (Ruíz-García et al., 2022), besides social and environmental impacts. On the 

other hand, the unstructured effect term (Figure 3b) displayed some fluctuation around 

one, as was expected because this term represents the temporal variation (residual) not 

explained by the model. 

 

 

Figure 3. Posterior mode and credible temporal trend interval for hotspot events in 

Oaxaca, Mexico. In a) the temporally structured effect ; b) the unstructured 

effect . 

 

We depict the exceedance probabilities in figures 4a-4d. Exceedance probabilities are the 

probability that the relative rate of area  is higher than value , mathematically . 

Note that almost half of the state has a probability greater than 0.75 (75 % of chance) of 

having at least two hotspot events in a year (Figure 4a). In the most extreme cases, there are 
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few cells located in the Isthmus of Tehuantepec that have at least a 0.75 probability of 

exceeding 12 events per year (Figure 4d). 

 

 

In a) for ; b) for ; c) for ; d) for . 

Figure 4. Exceedance probability , for a relative rate of hotspots events in 

Oaxaca, Mexico. 
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The posterior mode for the space-time interaction term on the natural scale, i.e. , is 

depicted in Figure 5 for all cells and all years included in the analysis. When  this 

implies that cell  in year  had hotspot records greater than average ( ). On the 

other hand, when , the hotspot records were less than average. Note that 

through the years, orange and red-colored cells (with high values of ) cover most of 

the area of the state from year to year. The increment in the number of orange and red-

colored cells is small but visible. It is in line with the main temporal trend observed in 

Figure 3a, i.e. the number of events is increasing in space and in time, which is an alarm 

signal that demands to adopt more efficient fires management policies by the local and 

federal governments to reduce and mitigate the impact of altered fire regimes in Oaxaca. 
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Figure 5. Posterior mode of the Spatio-temporal interaction . 

 

 

Conclusion 

 

 

We performed a Spatio-temporal analysis of hotspot events recorded in the Mexican 

state of Oaxaca in the last nineteen years using data from the MODIS sensor to 

investigate whether forest fires are randomly dispersed throughout the state or 

clusters are formed. We quantified the effect in hotspots number in areal units as a 

function of some environmental variables, the purely spatial effect and the temporal 

trend using a Bayesian hierarchical Poisson model. 

According to our results, environmental variables such as the mean temperature of 

the driest quarter, mean values of the Enhanced Vegetation Index, mean wind 

speed, and El Niño-Southern Oscillation occurrence can explain some of the 

observed spatial variations in hotspot events. From the spatial component of the 

statistical model, hotspots are clustered mainly throughout the Sierra Juárez and 

going up to the Isthmus of Tehuantepec, but also all through the Sierra del Sur 

(towards the coast of the state). An alarm signal was revealed from our analysis: 

the structured temporal term shows an increasing non-linear trend of hots-pots 

number across the period analyzed of about 42.2 %, altering the fire regimes even 

more. The Spatio-temporal interactions parameter also confirms this tendency 

showing that the number of events is incrementing in space and time. Suppose the 

increment continues in the following decades. In that case, hundreds of new 

hectares of forest and the species living there will be threatened, including 

economic activities and people's health in rural and urban areas. 
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This work can be a starting point for further research to understand better the spatial and 

temporal distribution of forest fires and altered regimes in Oaxaca. By identifying the main 

clusters, the Conafor can design better logistics to act with opportunity reducing the 

environmental and socioeconomic impacts caused by wildfires. But also, with better 

logistics, the economic and technical resources needed to contest wildfires can be 

optimized. 

Exceedance probability reveals some very local regions that expect a high number 

of events every year (>4 in a year), it would be interesting to answer from a 

causation point of view why this occurs and design practical mitigation actions. The 

incremental temporal trend discovered here can be reverted in many ways, such as 

the conscientization with complete and well-planned campaigns focused on rural 

populations that most interact with the forest. Technical training for farmers is also 

needed to make agricultural practices less risky in triggering forest fires. Illegal 

forest exploitation and land-use change can be effectively neutralized, generating 

profitable rural development activities such as ecotourism, agroforestry, and the 

incorporation of rural communities in the programs of payments for environmental 

services, among other things. A possible research project could point out how to 

generate perdurable rural development that inhibits those activities previously 

mentioned. From a statistical point of view, in the future, we could extend our 

analysis by including additional environmental and socio-economical variables to 

indirectly quantify the anthropogenic effects, poverty, and social inequality in the 

risk of forest fires and altered fire regimes. 
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