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Abstract 

This study uses a Bayesian Structural Poisson model to address the increasing frequency of wildfires in 
Brazilian biomes. Long-term trends, seasonal behavior, and the impact of certain meteorological variables on 
the occurrence of forest fires were identified in the following biomes: Amazon, Caatinga, Cerrado, Atlantic 
Forest, Pampa, and Pantanal. Nonlinear temporal trends were observed in all biomes, with varying annual 
increments between 1999-2020: 5.5 % in Pampa, 4.9 % in Pantanal, 3.0 % in Caatinga, 2.3 % in Amazon, 
2.2 % in Atlantic Forest, and 2.2 % in Cerrado. Seasonal patterns were present in all biomes, with similarities 
among the Amazon, Caatinga, Cerrado, and Atlantic Forest, while the Pampa and Pantanal displayed a 
bimodal pattern. Environmental factors such as evapotranspiration, precipitation, and temperature had 
significant effects on fire occurrence in different biomes. The findings of this study contribute valuable insights 
into fire patterns and their relationships with environmental factors in Brazilian biomes, helping to inform fire 
management and prevention strategies. 

Keywords: Bayesian modeling, Brazilian biomes, long-term trends, Poisson model, stochastic variation, 
wildfires. 

Resumen 

Este estudio aborda la creciente frecuencia de los incendios forestales en los biomas brasileños; para ello, se 
utilizó un modelo Bayesiano Estructural de Poisson. Se identificaron las tendencias a largo plazo, el 
comportamiento estacional y el impacto de determinadas variables meteorológicas en la ocurrencia de 
incendios forestales en los siguientes biomas: Amazonía, Caatinga, Cerrado, Bosque Atlántico, Pampa y 
Pantanal. Se observaron tendencias temporales no lineales en todos los biomas, con incrementos anuales 
variables entre 1999-2020: 5.5 % en Pampa, Pantanal 4.9 %, Catinga 3.0 %, Amazonía 2.3 %, Bosque 
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Atlántico y Cerrado 2.2%. Los patrones estacionales estuvieron presentes en todos los biomas, con 
similitudes entre Amazonía, Catinga, Cerrado y Bosque Atlántico, mientras que la Pampa y el Pantanal 
mostraron un patrón bimodal. Factores ambientales como la evapotranspiración, las precipitaciones y la 
temperatura influyeron significativamente en el surgimiento de incendios en distintos biomas. Los resultados 
de este estudio aportan información valiosa sobre los patrones de incendios y su relación con los factores 
ambientales en los biomas brasileños, lo cual ayudará en el desarrollo de las estrategias de gestión y 
prevención de incendios. 

Palabras clave: Modelado bayesiano, biomas brasileños, tendencias a largo plazo, modelo de Poisson, 
variación estocástica, incendios forestales. 

 

 

 

Introduction 

 

 

The frequency and extent of wildfires are increasing worldwide (Li et al., 2020). 

Enhanced fire regimes result in more severe events that release a large amount of 

energy over vast areas in a short period, affecting both public and private lands (Li 

et al., 2020; Schmidt and Eloy, 2020). These fires strongly impact ecosystem 

services, reduce water and soil quality, impoverish habitats and biodiversity, affect 

agricultural productivity and the carbon cycling, and the climate (Brando et al., 

2020; de Oliveira-Júnior et al., 2020), thereby compromising the resilience of 

terrestrial ecosystems (Pellegrini et al., 2021). 

Wildfires also cause substantial economic losses by damaging infrastructure, 

agriculture, and forestry, compromising water resources and recreational activities 

(da Silva et al., 2020). Additionally, air pollution from fires poses a serious health 

hazard (Tedim et al., 2018). 

Fires, particularly those that affect hundreds or thousands of hectares, are generally 

triggered by human activities (Cullen et al., 2021). Usually, these fires ignite in 

agricultural or peri-urban regions, subsequently extending their reach into 
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encompassing forests and shrublands. Thus, the proximity to agricultural land, 

roads, villages, and urban areas influences the occurrence of forest fires, 

particularly when the use of fire for managing agricultural areas is a cultural 

practice (Ganteaume et al., 2013; de Oliveira et al., 2019). 

Brazil has the highest frequency of fires in South America (SA) (Li et al., 2020). 

Among the Brazilian biomes, Cerrado is the only one whose ecosystems have 

evolved in association with fire (Schmidt and Eloy, 2020). However, historically, 

large fires have devastated wide areas not only in the Cerrado but also in the 

Amazon (Schmidt and Eloy, 2020) and the Pantanal biomes (Libonati et al., 2020). 

These three biomes experienced significant fires during the dry seasons of 2019 and 

2020: Cerrado had 127 693 forest fire ignitions, Amazon 320 036 forest fire 

ignitions, and Pantanal with 32 141 forest fire ignitions, although the dry seasons in 

the Amazon were not as exceptional as the droughts of 2005, 2010, and 2015 

(Schmidt and Eloy, 2020; Carvalho et al., 2022). In 2019, for the first time on 

record, smoke from forest fires in the Amazon reached São Paulo, the largest city in 

SA, due to the burning of more than 2.7 thousand kilometers Southeast of the 

burned regions. In 2020, one-third of the Pantanal biome was burned (Libonati et 

al., 2020; Oliveira et al., 2022). 

To date, the studies conducted within the Brazilian biomes have taken various 

approaches, including descriptive utilizing remote sensing products (Moreira et al., 

2012; de Oliveira-Júnior et al., 2020), inferential modeling with Generalized 

Extreme Values (GEV) distributions (Carvalho et al., 2022), as well as the 

application of machine learning techniques and non-parametric analyses based on 

IPCC projections (da Silva et al., 2020). However, it is noteworthy that none of the 

reviewed studies have delved into the analysis of fire data from the perspective of 

the Structural Poisson Model, which encompasses elements such as level, latent 
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trend, seasonality, and stochastic terms. This model framework posits that wildfire 

counts within the same region over time exhibit correlated patterns. 

The level component accounts for the effects of environmental covariates in the 

natural logarithm of expected fires. Trend identification assists in comprehending 

whether the number of hotspots is increasing, decreasing, or remaining stable over 

time. This information can have significant implications for fire management and 

policy. The seasonality component provides valuable insights for fire preparedness 

and resource allocation, enabling the prediction of periods with higher or lower fire 

risk based on historical patterns. Finally, the stochastic or error term includes 

everything not accounted by the other terms including random fluctuations. 

The goal of this work is to comprehend the long-term trend and seasonal behavior 

of the time series corresponding to wildfire records in Brazil's biomes, as well as to 

estimate the effect of certain meteorological variables that potentially could increase 

or decrease the associated wildfire risk. 

 

 

Material and Methods 

 

 

Study Area 
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This study covered the entire Brazilian territory, spaning 8.52 million km2. We 

focused on the analysis of six Brazilian biomes: Amazon, Caatinga, Cerrado, Atlantic 

Forest, Pampa, and Pantanal (Figure 1). 

 

 

A = Brazilian geographic regions; B = Terrestrial biomes (AM = Amazon; CT = 

Caatinga; CE = Cerrado; PT = Pantanal; AF = Atlantic Forest; PP = Pampa) 

according to the official Brazilian classification and meteorological stations 

locations (Teixeira et al., 2023). 

Figure 1. Distribution of the Brazilian biomes described in this study and the 

elevation model across the territory. 

 

 

Brazilian biomes 
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The Amazon biome is the largest in Brazil, occupying about 49.3 % of the national 

territory (IBGE, 2004). It experiences significant expansion in the Northern region 

and is characterized by vast, towering forests, making it the largest tropical timber 

reserve globally (da Silva et al., 2020). Additionally, the Amazon hydrographic basin 

is noteworthy, with the Amazon River being the largest in the world, flowing through 

a network of 1 100 tributaries and covering approximately six million km2 (MMA, 

2022). 

The Cerrado biome, the second largest in South America, occupies approximately 

22 % of the national territory. It can be found in the North, Northeast, Southeast, 

and Midwest regions of Brazil (MMA, 2022). The Cerrado comprises various 

physiognomies, including Campo Limpo, Campo Sujo, Campo Rupestre, Cerradão, 

Matas Secas, Ciliares e Galeria, and Veredas (da Silva et al., 2020). 

The Caatinga biome covers around 11 % of the national territory. It extends across 

a significant portion of the Northeast Brazil region and a smaller portion in the North 

of Southeast Brazil (da Silva et al., 2020; MMA, 2022). The vegetation in this biome 

thrives in environments with limited water availability, resulting in aridity for seven 

to nine months, between June and December. 

The Atlantic Forest stretches along the majority of the Atlantic coastal strip in Brazil. It 

occupies 15 % of the national territory and currently retains only about 29 % of its 

original coverage. The Atlantic Forest is composed of Dense Ombrófila Forest, Mixed 

Anthropophilic Forest, Open Ombrófila Forest, Semidecidual Seasonal Forest, as well as 

associated ecosystems such as mangroves, restinga vegetation, altitude fields, inland 

swamps, and forest enclaves in the Northeast (da Silva et al., 2020; MMA, 2022). 

The Pampa biome, characterized by temperate zone fields, is situated in the 

Southern region of Brazil, confined to the state of Rio Grande do Sul. It covers an 

area equivalent to 2.1 % of the national territory (da Silva et al., 2020). 
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The Pantanal, although the smallest biome in Brazil, is considered one of the largest 

continuous wetlands on the planet. It occupies 1.8 % of the national territory (da 

Silva et al., 2020). This biome is directly influenced by three significant Brazilian 

biomes: the Amazon, Cerrado, and Atlantic Forest. The Amazon Basin contributes 

significantly to the Pantanal's annual rainfall, making it a vast wetland. Many rivers 

that flow into the Pantanal originate in the Cerrado, bringing sediment and nutrients 

crucial for the Pantanal's ecosystem. 

Lastly, the Atlantic Forest, a lush biome along Brazil's coast, influences the 

Pantanal's biodiversity. Bird species, in particular, migrate between these two 

regions, enriching the Pantanal's avian diversity during certain seasons (Batista et 

al., 2017). As an alluvial plain, it is also impacted by rivers draining the Upper 

Paraguay basin and the Chaco biome (which refers to the Pantanal located in 

Northern Paraguay and Eastern Bolivia) (de Oliveira-Júnior et al., 2020). 

 

 

Data 

 

 

In this study, we analyzed meteorological variables extracted from the 

meteorological database of the National Institute of Meteorology (Inmet, 

www.inmet.gov.br) covering the period between 1999 and 2020 (Figure 1B). Fire 

data was obtained from the National Institute of Space Research (INPE, 2021), 

specifically the Imaging Division (DGI), which collects and processes satellite 

images from NOAA-12 and NASA AQUA satellites. The images are captured by 

AVHRR and MODIS sensors. 

 

http://www.inmet.gov.br/
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Bayesian Structural Poisson model 

 

 

We fitted to data a Structural Poisson model used in similar studies (Villar-

Hernández et al., 2022). The variable Yt that represents the number of fires at a 

given time (t) (month) for a specific biome, can take values Yt=0,1,2,…, and so on. 

The exogenous variables in our analysis were the following meteorological variables: 

maximum (Tmax; °C) and minimum (Tmin; °C) monthly temperature, average 

monthly wind speed (WS; m s-1), monthly precipitation (PP; mm), average monthly 

vapor pressure (VP; hPa), and monthly evaportranspiration (ET0; mm). 

The following two equations form the foundation of our modeling approach: 

 

     (1) 

 

     (2) 

 

Where: 

 = Number of fires at a given time (t) 

 = Expected number of fire focis at time t 

 = Poisson distribution 

 = Vector of standardized environmental covariates 
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 = Vector of regression coefficients 

 

Model formulation in Equation 2 consists of four parts:  represent the 

contribution of environmental variables into the natural logarithm of expected fires 

spots,  represents the latent trend (long-term variation),  representing the 

seasonal variation, and  represents the stochastic term. 

The latent trend helps analysts and researchers understand whether the data is 

increasing, decreasing, or following a specific trajectory over time. Seasonal 

variation refers to the recurring patterns or fluctuations in the data that follow a 

regular, predictable cycle. The stochastic term represents the random or 

unpredictable component of the time series data. It includes noise, irregular 

fluctuations, or unexpected events that cannot be attributed to environmental 

variables, trends, or seasonality (Harvey and Koopman, 2014). 

We fitted the aforementioned model from a Bayesian perspective using the 

Integrated Nested Laplace Approximation (INLA) methodology (Rue et al., 2009) 

implemented in the R programming language (R Core Team, 2022). The specific 

details of each component of Equation 2, priors and hyperpriors used, and example 

code can be consulted at https://github.com/bjesusvh/LTTSVABrazil.git. 

 

 

Results and Discussion 

 

 

Fires in Brazilian Biomes 

https://github.com/bjesusvh/LTTSVABrazil.git
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The Amazon and Cerrado biomes in Brazil exhibited the highest number of fire 

hotspots throughout the analyzed time period, with more than 100 000 hotspots 

recorded in some months almost every year (Figure 2). The Pantanal, Caatinga, 

Atlantic Forest, and Pampa biomes also experienced higher hotspot values (>60 

000), particularly in 2019 and 2020. 

 

 

Figure 2. Number of monthly fire spots in the biomes of Brazil (period 1999-2021). 

 

The fire hotspots recorded in 2019 and 2020 coincide with specific phases of the El 

Niño-Southern Oscillation climate variability mode (ENSO), which significantly 

impacts rainfall, temperature, and humidity patterns. These climatic influences, 

along with their subsequent effects such as dry spells and severe drought, vary 
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across regions and contribute to the intensification of fires in Brazil’s biomes (de 

Oliveira-Júnior et al., 2020; Carvalho et al., 2022). Ecosystems like the Cerrado are 

prone to fires due to dry conditions, fire-adapted vegetation, and human activity, 

while wetlands like the Pantanal are less susceptible due to moist conditions, dense 

vegetation, and limited human impact. Fire adaptation and management practices 

also influence susceptibility (Pereira et al., 2014). 

 

 

Effects of meteorological variables 

 

 

The meteorological variables statistically related to fire outbreaks are monthly 

precipitation, monthly evapotranspiration, maximum and minimum monthly 

temperature, and vapor pressure (Table 1) indicated by the 95 % Highest Posterior 

Density Interval (HPDI) not containing the zero. Positive values indicate an increase 

in the logarithm of the mean of fire outbreaks, while negative values indicate a 

decrease. For instance, precipitation exhibits a Regression coefficient of -0.11, with a 

95 % credible interval ranging from -0.2 to -0.02. To interpret the coefficient more 

intuitively, we take the exponential: exp(-0.11) equals 0.89. This implies that for 

everyone standardized unit increase in precipitation, the Amazon biome experiences 

an 11 % reduction in the risk of wildfire occurrence, calculated as , 

while keeping all other variables constant. Similar interpretations apply to the other 

coefficients. 
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Table 1. Summary statistics for regression coefficients associated with statistically 

significant (95 % probability) variables in each biome. 

Biome Environmental 
variable Coefficient 95 % HPDI 

interval 
Exp 

(Coefficient) 

Amazon* PP -0.11 [-0.2, -0.02] 0.90 

Amazon* ETo 0.38 [0.16, 0.6] 1.46 

Caatinga+ ETo 0.31 [0.01, 0.6] 1.36 

Caatinga+ VP 0.21 [0.02, 0.4] 1.24 

Cerrado** ETo 0.37 [0.26, 0.48] 1.45 

Atlantic Forest* ETo 0.28 [0.01, 0.56] 1.33 

Atlantic Forest* Tmax 0.39 [0.02, 0.76] 1.48 

Pampa** PP -0.16 [-0.24, -0.07] 0.85 

Pampa** VP -1.17 [-1.9, -0.45] 0.31 

Pampa** Tmax 1.33 [0.69, 1.98] 3.78 

Pantanal** PP -0.27 [-0.44, -0.11] 0.76 

Pantanal** ETo 0.46 [0.22, 0.7] 1.58 

Pantanal** Tmax 0.68 [0.08, 1.28] 1.98 

Pantanal** Tmin -1.06 [-2.04, -0.08] 0.35 

*Fire sensitive; **Fire dependent; +Fire independent. 

 

Monthly evapotranspiration exhibited a statistically significant positive effect in five 

out of the six biomes (excluding the Pampa biome); while precipitation had 

statistically significant negative effects in the Amazon, Pampa, and Pantanal biomes. 

Maximum monthly temperature had positive effects in Atlantic Forest, Pampa, and 

Pantanal biomes; vapor pressure had a positive effect in the Caatinga biome and a 

negative effect in the Pampa biome, and Tmin had a positive effect only in the 

Pantanal biome. 

Singh and Zhu (2021) highlight that in the Amazon, a decrease in precipitation and 

an increase in temperature strongly impact fire dynamics, with this impact being 
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much more significant in years with the presence of El Niño. In the case of biomes 

located in Southern Brazil, there is also evidence of the correlation between lower 

precipitation and vapor pressure and a higher incidence of forest fires (de Andrade 

et al., 2020). Another crucial variable is evapotranspiration; as it increases, it 

implies greater water loss from vegetative cover, leading to an increase in fuel that 

facilitates fire ignition and propagation. The only inconsistent sign is observed for 

the coefficient associated with vapor pressure in the Caatinga biome, but this might 

be due to its effect being masked by evapotranspiration. 

 

 

Long-term trends 

 

 

Our model suggested that the latent trends in the six biomes exhibit nonlinear 

increments over time (Figure 3). The annual average increments in the long-term 

(period 1999-2020) were as follows: 5.5 % for Pampa, 4.9 % for Pantanal, 3.0 % 

for Caatinga, 2.3 % for Amazon, 2.2 % for Atlantic Forest, and 2.2 % for Cerrado. 
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Figure 3. Posterior mean of the latent trend (mt; blue), its 95 % Highest Posterior 

Density Interval (HPDI, dotted lines), and time periods (red lines) with similar 

trends based on breakpoints for the six biomes in Brazil. 

 

According to ecological role that fires plays in Brazilian ecosystems, biomes can be 

classified into fire-sensitive, fire-dependent, and fire-independent. Fire-dependent 

biomes are coevolved with fire and are characterized by ecosystems dominated by 

grasses-grasslands and savannas. Conversely, fire-sensitive biomes are not adapted 

to fire, and not easily burn. When these forest do burn, fire can cause severe 

impacts, as is the case with tropical forests. Finally, in fire-independent biomes, fire 

is not an essential feature of their functioning (Pivello et al., 2021). 
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The Amazon (fire-sensitive biome) exhibits six periods of relative homogeneity in 

long-term trends. The final period extends from August 2018 to December 2020. 

The difference in average trend (per period) between the last and the first was 48 

%. When conducting the same analysis for the other biomes, we observe that the 

Atlantic Forest (fire-sensitive) and Cerrado (fire-dependent) have three periods. For 

both biomes, the latest of these begins in 2011 and extends to December 2020, 

with differences of 37 and 36 %, respectively, between the first and last periods. 

Pampa (fire-dependent) and Caatinga (fire-independent) share similarities, each 

displaying four periods in the trend. The difference between the last and the first 

period were 137 and 53 %, respectively. Finally, Pantanal (fire-dependent) exhibits 

four breakpoints, generating five periods in the long-term trend, with the last period 

spanning from late 2018 to the end of the study series, featuring an 86 % 

difference compared to the first period. 

In general, all biomes experienced substantial increases in long-term trends 

from 1999-2004. Following this, the trend stabilized due to efforts made by the 

Brazilian government to combat deforestation (Pivello et al., 2021). Even in the 

Amazon and the Pampa, the trend decreased for a decade. However, by 2014, a 

new period of significant increases began, reaching new highs in 2020 by 

combination of dry weather, human activities and lack of adequate 

environmental policies and surveillance (Pivello et al., 2021). 

The substantial increases in the long-term trend inferred by the model are 

complemented by previous research from a distinct inferential perspective. For 

example, Carvalho et al. (2022) found that there is a strong correlation between fire 

occurrences and agricultural activities, especially in Cerrado, Pantanal, and Atlantic 

Forest biomes. This leads us to suggest that antropogenic effects play a key role in the 

increase of the long temporal trend in these biomes. This is inline with Franco et al. 
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(2020) that suggest that 50 % of the original Cerrado has been converted for other 

purposes. 

The scenario is grim for the Pantanal biome; our work and other studies (Pivello et 

al., 2021; Marengo et al., 2022) indicates a recent increase in the number and 

extension of fires, leading to significant vegetation loss and fauna impacts. 

According to de Magalhães and Evangelista (2022), human activities near roads 

and waterways triggered fire events, while a dryer climate episode provided 

conditions for the fire to spread in this biome. 

Despite the fact that some biomes have evolved such that the biodiversity within 

them has developed fire-dependent adaptation mechanisms, the increasing levels in 

the long-term temporal trend are alarming. If this trend continues to rise in the 

coming years, the impacts on biodiversity, ecosystems, and human health will 

continue to worsen. 

 

 

Seasonal variation 

 

 

The seasonal patterns are provided for the log expected fire outbreaks and the 95 

% Highest Posterior Density Interval (HPDI) captured by the Poisson model (Figure 

4). According to da Silva et al. (2020), there is a similarity in the seasonal 

component between the Amazon and Cerrado biomes. However, this study also 

observes that the Caatinga and Atlantic Forest biomes exhibit similar seasonal 

patterns to those of the Amazon and Cerrado. The majority of fire hotspots 

throughout the year for the Amazon are concentrated from August to October, 
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accounting for 61 % of the total, being September with the highest incidence. For 

the Caatinga biome, the period of peak incidence (amplitude) extends from 

September to November, constituting 68 %, with the highest peak occurring in 

October. 

 

 

Figure 4. Posterior mean of the seasonal component (St; black solid line) and its 95 % 

Highest Posterior Density Interval (HPDI; blue shade) for the six biomes in Brazil. 

 

In the Cerrado biome, the period spans from July to October, comprising 74 %, with 

the peak in September. In the Atlantic Forest, the period is from July to October, 

making up 75 %, with the peak in August. On the other hand, the Pampa and 

Pantanal biomes showcase distinct seasonal patterns. The Pampa experiences a 

period from July to September, contributing to 37 %, with the peak occurring in 

August. Lastly, for the Pantanal, the period extends from August to December, 

accounting for 70 %, featuring two peaks in September and November. The first peak 
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is driven by reduced rainfall and natural and human factors. The second peak, 

coincides with the driest vegetation conditions, mainly due to human activities like 

land clearing. Broadly speaking, peaks in all biomes occurred at the end of the dry 

season, just before the onset of the rainy season. Seasonality of forest fires accros 

biomes is influenced by the Intertropical Convengence Zone that migrate seasonally 

following the sun, and its position influences the onset and cessation of the rainy 

season in Brazil. 

The uncertainty associated with seasonal patterns captured by the HPDI (Figure 4) 

is higher in Caatinga and Pantanal compared with the rest of the biomes. The cause 

of this uncertainty would be linked to the natural conditions under which these 

biomes have evolved or if it is attributed to anthropogenic effects or climate change. 

Finally, it is important to note that high-amplitude seasons lead to intense fires 

with severe ecological, economic, and human risks, requiring extensive 

resources. In contrast, low amplitude seasons result in milder, more manageable 

fires, benefiting ecosystems and reducing the threat to communities. The period 

from August to November need the greather attention on from the public 

authorities regarding the implementation of prevention and control fire programs, 

as emphasized by Lopes et al. (2020). 
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Conclusions 

 

 

Among the Brazilian biomes, the Amazon and Cerrado consistently harbor the 

highest number of fire hotspots in Brazil, often exceeding 100 000 annually. These 

hotspots coincide with specific phases of the El Niño-Southern Oscillation (ENSO). 

Some meteorological variables are statistically related to fire outbreaks. When 

precipitation increases by one standardized unit, the risk of wildfires decreases by 

11 % in the Amazon biome (a fire-sensitive biome). Evapotranspiration increases 

the risk by 33 % when it increases by one unit in the Atlantic Forest biome (also 

fire-sensitive), and maximum temperature increases the risk of wildfires by 48 % 

when it increases by one unit in the same biome. 

In future research, it will be crucial to assess the potential impact on the 

expected number of forest fires under adverse scenarios of climate change, such 

as temperature and evapotranspiration increases, as well as precipitation 

decreases, based on projections from the Intergovernmental Panel on Climate 

Change for the Brazilian regions. 

The analysis of long-term trends reveals nonlinear increases in fire occurrences 

across all biomes, with annual average increments ranging from 2.2 to 5.5 % over 

the period from 1999 to 2020. Notably, the Amazon, Atlantic Forest, and Cerrado 

biomes have experienced periods of relative stability followed by significant 

increases in recent years. 

Amazon, Atlantic Forest, and Cerrado biomes exhibit distinct periods in long-term fire 

trends, with significant differences between first and last periods. Amazon saw a 48 

% difference, while Atlantic Forest and Cerrado experienced differences of 37 and 36 

%, respectively. Other biomes like Pampa and Caatinga also show varied trends, 



Revista Mexicana de Ciencias Forestales Vol. 15 (84) 
Julio - Agosto (2024) 

 
 

 
48 

 

with differences of 137 and 53 %. Pantanal displays notable breakpoints, with an 

86 % difference compared to first period. 

The Amazon, Cerrado, Caatinga, and Atlantic Forest biomes exhibit similar seasonal 

patterns, with peak incidences typically occurring at the end of the dry season. In 

these biomes, more than 60 % of fire hotspots are concentrated from July to 

October. The Pampa biome does not exhibit a remarkable seasonal pattern, while in 

the Pantanal biome, two peaks occur in September and November, coinciding with 

reduced rainfall and dry vegetation conditions. 

These findings highlight multifaceted wildfire dynamics in Brazilian biomes, 

emphasizing integrated management. Leveraging evidence and proactive measures 

can mitigate impacts and promote resilience. Future research should employ space-

time modeling for identifying high-incidence zones and delineating protected areas. 
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