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Abstract 

Forest ecosystems play a key role in carbon storage, highlighting the importance of accurately estimating the tree 
biomass. The objective was to estimate the forest biomass using a laser scanner (LiDAR, Light Detection and 
Ranging), specifically a terrestrial device (TLS, Terrestrial Laser Scanner), at the individual tree level. Thirty-one 
trees were selected from a Pinus cooperi regular stand, whose diameter at breast height (DBH) and height (h) 
variables were measured in a traditional way. TLS data were collected with a model Focus M70 FARO® laser 
scanner and processed to three-dimensionally model the logs and calculate their biomass. These data were 
compared with estimates obtained by allometric equations and traditional measurements. Results indicate that 
the TLS is accurate in measuring diameters (R2=0.72 and RMSE=1.28 cm), compared to traditional methods. 
However, it underestimates the tree height (R2=0.79 and RMSE=1.68 m), affecting the accuracy of the biomass 
calculation. Although the TLS provided acceptable estimates, these were lower than those obtained using 
allometric equations. In conclusion, TLS is a promising tool for nondestructive biomass studies. Future work should 
consider in greater detail the influence of the characteristics of the studied area, the scanning methodology, and 
the algorithms applied in the estimation of biomass. 

Key words: Circumference adjustment, biomass, terrestrial laser scanning, 3D modeling, point cloud, forest 
parameters. 
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Resumen 

Los ecosistemas forestales desempeñan un papel clave en el almacenamiento de carbono, lo que subraya la 
importancia de estimar la biomasa de los árboles de manera precisa. El objetivo de la presente investigación fue 
estimar la biomasa forestal mediante un escáner láser (LiDAR, por sus siglas en inglés Light Detection and 
Ranging), específicamente un dispositivo terrestre (TLS, Terrestrial Laser Scanner), a nivel de árbol individual. Se 
seleccionaron 31 árboles de una masa regular de Pinus cooperi de los cuales se midieron las variables de diámetro 
a la altura del pecho (DAP) y la altura (h), de manera tradicional. Los datos de TLS se recolectaron con un escáner 
laser FARO® Focus M70, se procesaron para modelar tridimensionalmente los troncos y calcular su biomasa. Estos 
datos se contrastaron con estimaciones obtenidas por ecuaciones alométricas y mediciones tradicionales. Los 
resultados indican que el TLS es preciso para medir diámetros (R2=0.72 y RMSE=1.28 cm), respecto a los métodos 
tradicionales. Sin embargo, subestima la altura de los árboles (R2=0.79 y RMSE=1.68 m), lo que afecta la precisión 
en el cálculo de la biomasa. Aunque el TLS proporcionó estimaciones aceptables, estas fueron inferiores a las 
obtenidas mediante ecuaciones alométricas. Se concluye que el TLS es una herramienta prometedora para 
estudios no destructivos de biomasa. Futuros trabajos deben considerar con mayor detalle la influencia de las 
características del área estudiada, la metodología del escaneo y los algoritmos aplicados en la estimación de la 
biomasa. 

Palabras clave: Ajuste de circunferencia, biomasa, escaneo láser terrestre, modelado 3D, nube de puntos, 
parámetros forestales. 

 

 

 

Introduction 

 

 

Forest ecosystems are the main reservoir of aerial biomass. During photosynthesis, they 

capture carbon dioxide and release oxygen. Subsequently, the carbon fixed in their tissues 

is transferred to the soil through the decomposition of organic matter. For this reason, the 

accurate estimation of biomass makes it possible to quantify the carbon storage capacity 

of forests. Traditionally, methodologies based on destructive sampling have been used to 

develop allometric models to estimate aboveground biomass (Segura & Andrade, 2008). 

The most commonly used models include linear, nonlinear, and mixed-effects regression 

derivatives (Návar, 2009; Vargas-Larreta et al., 2017). 

The main independent variables considered in these equations are diameter at breast 

height (DBH), i. e., at 1.30 m from the ground, and total height, both of which are 

easy to measure (Huy et al., 2016). However, these expressions are often specific to 

certain geographic regions or species, a fact that limits their applicability in areas 
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where local data are not available (Chojnacky et al., 2014). In addition, the collected 

data must comply with certain statistical assumptions for their correct application, 

such as independence of the data, normal distribution, and constant variance, as well 

as assuming a minimum error in the measurement of the independent variables 

(Ashraf et al., 2013). 

Within this context, new methodologies based on remote sensing technologies applied 

to forest measurement, such as LiDAR devices, have emerged. The main platforms 

for these devices are: the spatial such as NASA's ICESat-2 and GEDI, Airborne Laser 

Scanning (ALS), and the Terrestrial Laser Scanning (TLS), which includes Mobile Laser 

Scanning (MLS) and Personal Laser Scanning (PLS) (Borsah et al., 2023). LiDAR 

systems work by emitting laser pulses that, when interacting with a surface, reflect 

part of the energy back to the sensor; the process generates three-dimensional data 

of the scanned entities, making it possible to obtain, with high accuracy, a three-

dimensional model of the objects (Disney et al., 2018). 

Each LiDAR platform has specific characteristics. TLS offers high accuracy in the three-

dimensional reconstruction of individual trees, but its range is limited, and it captures 

the forest canopy poorly due to branch occlusion. ALS covers large forest areas with 

high resolution, although its accuracy depends on laser penetration into the vegetation. 

MLS provides continuous scanning and covers large areas in less time than TLS, but its 

accuracy can be affected by positioning errors and inherent motion noise. Finally, space 

LiDAR provides global monitoring of forest biomass but has a lower resolution and is 

subject to satellite orbital coverage (Borsah et al., 2023). 

The estimation of forest aboveground biomass using TLS can be divided into two main 

approaches: structural modeling (Calders et al., 2015), and extraction of 

dendrometric parameters (Kankare et al., 2013). Recently, satellite images and 

artificial intelligence algorithms have been integrated to the TLS data, among which 

the use of neural networks stands out for its greater precision in biomass estimation 

(Bhandari & Nandy, 2024; Wang et al., 2023). Globally, China and the United States 
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of America are leading in the application of TLS for biomass calculation, especially in 

temperate forests (Compeán-Aguirre & López-Serrano, 2024). 

In Mexico, the use of TLS is still limited. Previous forest research has documented the 

development of the TreeTool v0.1 program, which can measure DBH and height in 

ALS and TLS data (Montoya et al., 2021), the application of a MLS to measure forest 

inventory parameters (Hernández-Moreno et al., 2025a), and the calculation of 

volume and biomass (Hernández-Moreno et al., 2025b). On the other hand, airborne 

LiDAR has been more studied, with several researches focused on forest inventories 

and aerial biomass estimates (Galeote-Leyva et al., 2022; Islas-Gutiérrez et al., 

2024; Ortiz-Reyes et al., 2019, 2022). Despite the conducted research, technical and 

methodological challenges remain, highlighting the need to study the terrestrial LiDAR 

at the national level. 

Based on the above, the objective of this study was to estimate forest biomass at the 

individual tree level using data from a Terrestrial LiDAR sensor (TLS). For this 

purpose, the total height and diameter variables were extracted and used to model 

the stem of each tree. The results were compared with estimates derived from 

allometric equations. 

 

 

Materials and Methods 

 

 

Study area 
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The study was conducted in a site with a regular forest stand of Pinus cooperi C. E. 

Blanco, with a dimension of 50×50 meters and a density of 960 trees ha-1, located in 

the La Victoria ejido, Pueblo Nuevo municipality, state of Durango, Mexico (Figure 

1A). The site was established under the methodology developed by the Forest 

Commission (Hummel et al., 1959). Here, homogeneous areas are divided into plots 

that can range between 1 200 and 4 000 m2, where trees are numbered and 

periodically measured to monitor their growth. The study area has a temperate sub-

humid and semi-cold sub-humid climate (García, 2004), with an average annual 

temperature of 20 to 22 °C and annual precipitation between 800 to 1 200 mm. 

 

 

A = Geographical location of the study area; B = Selected and labeled site trees. 

Figure 1. Study area. 

 

 

Data collection 

 

 

Thirty-one trees with a DBH of over 10 cm (Hoover & Smith, 2020) were randomly 

selected and marked with pink labels for identification in the TLS point cloud (Figure 
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1B). The DBH of each tree was measured at 1.30 m above the ground with a model 

Mantax Blue Häglof® 800 mm forest caliper, and two perpendicular measurements 

with a North-South and East-West orientation were averaged. The height (h) of each 

individual was obtained with a model Vertex 5 Haglöf® hypsometer. 

Once the direct measurements were taken, a laser scanning was performed. The 

location of the sensor and the distribution of the trees are key to not losing 

information; therefore, it is recommended to carry out multiple scans (Liang et al., 

2018). Four positions were determined to cover most of the trees, with an average 

of 9 minutes per scan, based on the work of Bornand et al. (2023), who used three 

scans in a temperate forest. The positions where the equipment was placed and the 

distribution of the trees are shown in Figure 2A. The device used was a model Focus 

M70 FARO® scanner; with a wavelength of 1 550 nm, a measuring range of 0.6 to 70 

m, and an accuracy of ±3 mm; it records a laser pulse reflection and captures RGB 

images of up to 165 megapixels. The setup profile was “outdoors from 20 m”, to cover 

a horizontal area of 360° and a vertical area from -60° to 90°, whereby a mesh of 

approximately 44 million points per scan was generated. 

 

 

A = Spatial distribution of trees and TLS device; B = Reflective target on a tree; C = 

Merged point cloud. 

Figure 2. Spatial distribution, reflective target and point cloud. 
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Point clouds were merged with the FARO® SCENE Software version 5.5.3.16 (FARO, 

2019), using 10 reflective targets placed before scanning (Figure 2B). The software 

aligned the point clouds using the geospatial information of the targets, to generate 

a single cloud (Figure 2C). The color unit of the scanner made it possible to visualize 

the pink labels, which made the identification of the trees easier. 

 

 

Biomass calculation with the traditional method 

 

 

The stem biomass was estimated using the diameter and height data, with allometric 

models developed for Pinus cooperi. We used the equation of Návar (2009), based 

solely on the DBH (Equation 1), and that of Vargas-Larreta et al. (2017), which 

incorporates height h (Equation 3). In addition, the generic models suggested by both 

authors for all pine species were considered (equations 2 and 4). Table 1 shows the 

expressions that were used. 

 

Table 1. Allometric equations for Pinus cooperi C. E. Blanco and the Pinus L. genus. 

Equation ID Author 

𝑠𝑠𝑠𝑠 = 0.1899𝐷𝐷𝐷𝐷𝐷𝐷2.2270 (1) Návar (2009) 

𝑠𝑠𝑠𝑠 = 0.0726𝐷𝐷𝐷𝐷𝐷𝐷2.4459 (2) 

𝑠𝑠𝑠𝑠 = 0.0311𝐷𝐷𝐷𝐷𝐷𝐷2.0936ℎ0.7688 + 0.0114𝐷𝐷𝐷𝐷𝐷𝐷1.6760ℎ0.7463 (3) Vargas-Larreta et al. (2017) 

𝑠𝑠𝑠𝑠 = 0.0291𝐷𝐷𝐷𝐷𝐷𝐷1.7417ℎ1.1661 + 0.0203𝐷𝐷𝐷𝐷𝐷𝐷1.3330ℎ0.9289 (4) 

sW = Stem biomass (kg); DBH = Diameter at breast height (cm); h = Total height (m). 
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Estimation of TLS volume and biomass 

 

 

The workflow included modeling the tree stem, calculating its volume, and estimating 

the biomass by multiplying the volume by the specific density value of Pinus cooperi. 

The entire process was based entirely on data derived from the point cloud. Statistical 

calculations and analysis, except for segmentation, were carried out in the R language 

version 4.4.1 (R Core Team, 2024) within the RStudio development software version 

2023.12.1 Build 402 (RStudio Team, 2024). Only base functions and standard 

packages were used.  

 

 

Data segmentation and normalization 

 

 

The selected trees were individually segmented using the CloudCompare software 

version 2.13 (CloudCompare, 2024), removing branches and retaining only trunk 

points. The height of the stem was normalized by subtracting the minimum value of 

z, translating the base to z=0, and the total height was defined as the maximum 

value of z. To model the stem, it was divided into 5 cm intervals, and in each one the 

points were taken between ±2.5 cm, forming three-dimensional discs. Among these 

intervals, the interval corresponding to 1.30 meters from the ground containing the 

DBH was included. To reduce computational cost, the discs were projected in 2D by 

eliminating the z-coordinate and repeated points were discarded (Ye et al., 2020). 

Figure 3 shows the process described herein. 

 



Revista Mexicana de Ciencias Forestales Vol. 16 (89) 
Mayo - Junio (2025) 

 
 

119 

 

A = Segmented tree; B = Segmented stem; C = Example of disc extraction; D = 

Two-dimensional circumference. 

Figure 3. Example of the disc extraction process at the individual tree level. 

 

 

Estimation of the diameters in circumferences 

 

 

The diameter of each projection was calculated by fitting a circumference to the points 

contained in its respective plane, defined by its center (h, k) and radius (r). This fit 

was approached as an optimization problem; the quadratic error between the points 

and the proposed circumference were minimized by means of the objective function 

of Umbach and Jones (2003) (Equation 5): 

 

𝑆𝑆𝑆𝑆(ℎ, 𝑘𝑘, 𝑟𝑟) = ∑ �𝑟𝑟 − �(𝑥𝑥𝑖𝑖 − ℎ)2 + (𝑦𝑦𝑖𝑖 − 𝑘𝑘)2�
2𝑛𝑛

𝑖𝑖=1      (5) 

 

Where: 
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SS = Sum of squared errors (m) 

(h, k) = Center of the circumference 

r = Radius of the circumference (m) 

(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) = Point 𝑖𝑖 of plane 2D 

n = Number of points on the plane 

 

Equation (5) was minimized, and the optimal values of h, k, and r were determined, 

with the Nelder-Mead method (Nelder & Mead, 1965), implemented through the 

“optim” function of the “stats” package. This approach, which requires few 

computational resources, employs the following initial parameters (equations 6 to 8) 

(Compeán-Aguirre et al., 2024). 

 

ℎ0 = �̅�𝑥 = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1      (6) 

 

𝑘𝑘0 = 𝑦𝑦� = 1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1      (7) 

 

𝑟𝑟0 = 1
𝑛𝑛
∑ �(𝑥𝑥𝑖𝑖 − ℎ0)2 + (𝑦𝑦𝑖𝑖 − 𝑘𝑘0)2𝑛𝑛
𝑖𝑖=1      (8) 

 

Where: 

h0 = Average of x-coordinates 

k0 = Average of y-coordinates 

r0 = Average of the radius (m) 

(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) = Point 𝑖𝑖 of plane 2D 

n = Number of points on the plane 



Revista Mexicana de Ciencias Forestales Vol. 16 (89) 
Mayo - Junio (2025) 

 
 

121 

 

 

Height-diameter ratio 

 

The variation of the diameter of the stem along its height was modeled by the 

following Equation 9 (Kaitaniemi et al., 2020): 

 

𝐷𝐷𝑖𝑖 = 𝑎𝑎ℎ𝑖𝑖
−𝑏𝑏     (9) 

 

Where: 

Di = Predicted diameter of segment 𝑖𝑖 (m) 

a, b = Statistical coefficients of the model 

hi = TLS height of the stem in segment 𝑖𝑖 (m) 

 

The model was fitted with the diameters previously calculated with the Nelder-Mead 

method (Nelder & Mead, 1965). The coefficients a and b were estimated with the 

“nls” function of the “stats” package; 70 % of the data were assigned to fit and 30 

% to validate each model. 

 

 

Volume and Biomass 
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The stem volume (sV) was calculated by integrating the cross-sectional area A(hi) from 

Equation 9. The radius of the segment 𝑖𝑖 as a function of the height hi is defined as: 

 

𝑟𝑟𝑖𝑖(ℎ𝑖𝑖) = 𝐷𝐷𝑖𝑖(ℎ𝑖𝑖)
2

 =  𝑎𝑎
2
ℎ𝑖𝑖
−𝑏𝑏     (10) 

 

Where: 

ri = Predicted radius of segment 𝑖𝑖 (m) 

hi = TLS height of the stem in segment 𝑖𝑖 (m) 

Di = Predicted diameter of segment 𝑖𝑖 (m) 

a, b = Statistical coefficients of the model 

 

Therefore, the cross-sectional area as a function of height is expressed as: 

 

𝐴𝐴(ℎ𝑖𝑖) =  𝜋𝜋 𝑟𝑟𝑖𝑖(ℎ𝑖𝑖)2 =  𝜋𝜋 �𝑎𝑎
2
�
2
ℎ𝑖𝑖
−2𝑏𝑏     (11) 

 

Where: 

A = Cross-sectional area of segment i (m2) 

hi = TLS height of the stem in segment 𝑖𝑖 (m) 

ri = Predicted radius of segment i (m) 

a, b = Statistical coefficients of the model 

 

Integration of the cross-sectional area A(hi) from hi=0 to hi=h resulted in the equation 

of the volume of the stem as a function of height (Equation 12) and the values a and 

b (Equation 13): 
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𝑠𝑠𝑠𝑠 = 𝜋𝜋𝑎𝑎2

4 ∫ ℎ𝑖𝑖
−2𝑏𝑏ℎ

0 𝑑𝑑ℎ𝑖𝑖     (12) 

 

𝑠𝑠𝑠𝑠(ℎ,𝑎𝑎, 𝑏𝑏) = 𝜋𝜋𝑎𝑎2

4(−2𝑏𝑏+1)ℎ
−2𝑏𝑏+1, if −2𝑏𝑏 + 1 > 0     (13) 

 

Where: 

sV = Stem volume (m3) 

a, b = Statistical coefficients of each model 

h = Total TLS stem height (m) 

hi = TLS height of the stem in segment 𝑖𝑖 (m) 

dhi = Differential of the variable hi (m) 
 

Finally, the stem biomass was calculated by multiplying the total volume of each 

stem, obtained with Equation (13), by the density of the wood, as indicated in the 

following expression: 

 

𝑠𝑠𝑠𝑠 =  𝑠𝑠𝑠𝑠 × 𝜌𝜌     (14) 

 

Where: 

sW = Stem biomass (kg) 

sV =Stem volume (m3) 

𝜌𝜌 = 416 kg m3. Value cited by Silva-Arredondo and Návar-Cháidez (2012) for 

Pinus cooperi. 
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Statistical analysis and assessment metrics 

 

 

The normality of the data for diameter (DBH), height (h), and biomass (sW) was 

evaluated with the Shapiro-Wilk test, using both the values of the traditional 

instruments and the TLS. The diameter and height followed a normal distribution with 

both methods. After assessing the homogeneity of the variances with Levene's test, 

their means were compared using Student's t-test with 95 % confidence. For biomass, 

being non-normal, the Kruskal-Wallis test and a Dunn's post hoc analysis with 

Bonferroni correction (Haynes, 2013), using the dunn.test package version 1.3.6 

(Dinno, 2024) and a confidence interval of 95 % were applied. In addition, the RMSE 

(Equation 15) and R2 (Equation 16) were calculated for diameter and height. The 

observed values of DBH and height were assumed to correspond to caliper and 

hypsometer measurements, and predicted values were estimated with TLS. 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1      (15) 

 

𝑅𝑅2 = ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

     (16) 

 

Where: 

RMSE = Root mean squared error 

R2 = Coefficient of determination 

𝑦𝑦𝑖𝑖 = Observed values 
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𝑦𝑦𝚤𝚤� = Predicted values 

𝑦𝑦� = Average of the observed values 

n = Total number of observations 

 

 

Results and Discussion 

 

 

The analysis of the variable h obtained with the hypsometer and the TLS point cloud 

estimated a mean of 12.29 m and 10.82 m, respectively (Table 2). The Shapiro-Wilk 

test confirmed the normality of the data in both methods (p=0.1168 and p=0.9113), 

and Levene’s test indicated homogeneity of variances (p=0.1569). Under these 

assumptions, Student's t-test showed significant differences between both methods 

(t=-4.1464, p=0.0001). This is confirmed by Figure 4A. The RMSE of the TLS, with 

respect to the hypsometer is 1.68 m, with a R2 of 0.79, as shown in the scatter plot 

in Figure 4B. 

 

Table 2. Descriptive statistics of h obtained in both methods. 

 
h (m) 
n=31 

Method Minimum Mean Maximum SD 

Hypsometer 8.80 12.29 17.60 1.64 

TLS 8.59 10.82 13.29 1.10 

h = Height; n = Total number of observations; SD = Standard deviation. 
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A = Comparison of the variable h in the different methods; B = Scatter plot and line 

of adjustment for variable h. 

Figure 4. Analysis of the height h measured with the hypsometer versus the TLS. 

 

It is important to consider that the actual height of the trees is an unknown 

parameter, so any comparison should be interpreted with caution. Although the TLS 

offers greater accuracy than the hypsometer and is free from the error associated 

with manual measurement, occlusions in the data capture can affect the estimation 

of the height. The results are consistent with Liu et al. (2018), who documented an 

average RMSE of 0.95 m in height measurements with TLS, they highlighted biases 

related to canopy density and terrain obstructions. De Petris et al. (2022) noted that 

terrain slope affects the accuracy of the measurements, while hypsometers are more 

prone to angular errors at distances of less than 20 m; TLS systems may face 

problems of specular reflection and signal attenuation at greater distances (Tan et 

al., 2018). These instrumental limitations and site conditions would contribute 

substantially to the increased RMSE of the study. 

Regarding the DBH, no significant differences were obtained between the assessed 

methods: it was 15.92 cm on average when measured with the caliper, and 15.73 

cm when TLS was utilized (Table 3). The Shapiro-Wilk test confirmed the normality 
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of the data (p=0.6292 and p=0.2032), and Levene’s test indicated homogeneity 

of the variances (p=0.8005). Student's t-test exhibited no significant difference 

between methods (t=0.3295, p=0.7429). Figure 5A shows the comparison 

between means. The difference in the RMSE between the caliper and TLS was 1.28 

cm, with an R2=0.72 (Figure 5B). 

 

Table 3. Statistic describing the DBH in both methods. 

 
DBH (cm) 

n=31 

Method Minimum Mean Maximum SD 

Caliper 12.35 15.92 20.32 2.20 

TLS 11.33 15.73 21.79 2.39 

DBH = Diameter at breast height; n = Total number of observations; SD = 

Standard deviation. 

 

 

A = DBH comparison between the various methods; B = Scatter plot and fit line 

for the DBH. 

Figure 5. Analysis of the variable DBH measured with the caliper versus TLS. 
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These results are lower than those reported by Wu et al. (2024), who obtained an 

RMSE of 5.26 cm in tropical forests, with trees of complex morphologies. However, 

they are larger than those of Pitkänen et al. (2019), who estimated an RMSE of 0.73 

cm using cylindrical instead of two-dimensional processing. Three-dimensional fitting, 

although more accurate, has a higher computational cost (Ye et al., 2020). The fitted 

models for the TLS height/diameter ratio showed a high capacity to describe the 

diameter variation along the stem, with an average R2 of 0.91 and a RMSE of 0.50 

cm, calculated with the validation data (30 %). Table 4 shows the descriptive statistics 

of the evaluation metrics and coefficients a and b. While the consistency of these 

parameters highlights the applicability of the model for the digital reconstruction of 

the stem, the underestimation of the height introduces a bias that will affect any 

calculation. Figure 6A shows the reconstructed stem of a tree. It is important to 

mention that the applied model does not consider the curvature of the trunk; likely, 

this factor will also have an impact on subsequent calculations. Figure 6B shows the 

variation of the diameter in the first two meters and the response curve of the model 

generated for a single tree. 

 

Table 4. Descriptive statistics of the height-diameter model (Equation 9). 

n=31 

Parameter Minimum Mean Maximum SD 

R2 0.68 0.92 1.00 0.07 

RMSE (cm) 0.13 0.50 1.13 0.25 

a 0.11 0.15 0.22 0.02 

b 0.04 0.09 0.16 0.03 

n = Total number of observations; R2 = Coefficient of determination; RMSE = Root 

mean squared error; a, b = Coefficients; SD = Standard deviation. 
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A = Estimated stem of the point cloud; B = Scatter plot of DBH-h variation. 

Figure 6. Example of a reconstructed stem and its model response curve. 

 

Table 5 summarizes the descriptive statistics of the volumes calculated for the 31 

stems, with an average value of 0.17 m3. The variability of the volume between trees 

is due to differences in diameters and heights. Underestimation of the height due to 

TLS limitations (Tan et al., 2018) is a source of error, especially in tall trees or trees 

with occlusions in point clouds. 

 

Table 5. Descriptive statistics of the estimated volume. 

n=31 

Variable Minimum Mean Maximum SD 

sV (m3) 0.07 0.17 0.36 0.01 

n = Total number of observations; sV = Stem volume; SD = Standard deviation. 

 

The mean biomass estimated with TLS was 68.78 kg, with a tendency to 

underestimate the values compared to the traditional allometric methods (Table 6) 
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due to the underestimation of the height. Finally, the analysis indicated that the 

biomass data do not follow a normal distribution, according to the Shapiro-Wilk test 

(p<0.05). The Kruskal-Wallis nonparametric test confirmed significant differences 

between the methods evaluated (X2=20.18, p=0.001). Dunn's post hoc analysis, with 

Bonferroni correction, revealed that the biomass estimates using TLS differed 

significantly from those obtained with Equation 1 (p=0.0015), but not with the other 

methods (p>0.05). According to this analysis, the TLS and Equation 2 belong to group 

“a”; both Equation 3 and 4 are in an intermediate position, within group “ab” (Figure 

7). Although the results point to the TLS estimating biomass within the expected 

ranges, they are not conclusive, as other factors such as the error cited by Návar 

(2009) and the cumulative error present in the equations of Vargas-Larreta et al. 

(2017) should be considered. 

 

Table 6. Descriptive statistics of the estimated biomass. 

Method 

Stem biomass sW (kg) 

n=31 

Minimum Median Mean Maximum SD 

Equation 1b 51.25 88.70 92.47 155.25 28.83 

Equation 2a 33.97 62.05 65.27 114.74 22.40 

Equation 3ab 40.82 77.28 80.82 169.45 29.95 

Equation 4ab 40.33 74.75 78.24 172.47 28.77 

TLSa 31.61 63.35 68.78 149.95 28.38 

n = Total number of observations; a, b Different letters indicate significant statistical 

differences; SD = Standard deviation. 
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Figure 7. Box-and-whisker plot of biomass values for each method. 

 

The main issue in the present study was the underestimation of the height (h) 

obtained by TLS, which affects the calculation of the stem biomass. This finding is in 

agreement with Cabo et al. (2018) and Wang et al. (2023), who mention that 

structural occlusions and information loss in the upper parts of the tree are common 

limitations of TLS, especially in tall and dense trees. Kükenbrink et al. (2021) also 

observed underestimates in complex structures, despite the high accuracy of the TLS 

(R2=0.954) in urban trees. On the other hand, the results contrast with Krause et al. 

(2023), who indicate that total aboveground biomass estimates using TLS are, on 

average, 10 % higher than those obtained with allometric equations. This discrepancy 

could be explained by the fact that their paper includes both the trunk and the main 

branches, while this study focuses exclusively on the stem. 

The proposed methodology proves efficient in computational resources and offers 

acceptable results, but has limitations such as the use of a fixed density value for Pinus 

cooperi and the study of a single species with a limited sample. In addition, manual dot 
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removal is time-consuming. Although the costs and timing are not addressed, the 

implementation of TLS requires a high investment in the sensor, infrastructure, and 

trained personnel, which could be a challenge in Mexico. It is also important to mention 

that the variability of ecosystems and equipment makes it difficult to compare 

methodologies. Future research could focus on automating segmentation, exploring the 

use of dynamic density values, and studying different ecosystems. Also, it would be 

relevant to integrate information from other sources, such as satellite images. 

 

 

Conclusions 

 

 

The TLS showed high accuracy in the estimation of DBH (R2=0.72; RMSE=1.28 cm) 

when considering the measurements of the caliper as reference. As for the estimation 

of the total height (R2=0.79; RMSE=1.68 m), special caution should be taken when 

using this method, since the crown density significantly influences the results. The 

present methodology allows estimating the aboveground biomass at the individual 

tree level with acceptable accuracy; however, its practical application should be 

considered with reservations, as site conditions and traditional methodologies used 

may influence the accuracy of the measurements. It is recommended, in future 

research, to incorporate complementary technologies such as aerial LiDAR scanners 

to improve the accuracy of height estimation, as well as to include additional variables 

such as stem curvature. In addition, it is necessary to develop algorithms for the 

detection and segmentation of trees with TLS data to cover large areas in the shortest 

possible time, to extend the analysis to different tree species, and to generate specific 

allometric equations based on TLS data. 
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