Revista Mexicana de Ciencias Forestales Vol. 16 (90)
Julio - Agosto (2025)
DOI: https://doi.org/10.29298/rmcf.v16i90.1543 Review article
Sanidad o salud forestal en México: estudios comparativos en tres ecosistemas protegidos Forest health or forest pest management: comparisons among three protected ecosystems Jorge E. Macías Sámano1, Claudia M. Agraz Hernández2*, José Villa Castillo3 |
Fecha de recepción/Reception date: 16 de diciembre de 2024.
Fecha de aceptación/Acceptance date: 20 de junio de 2025.
_______________________________
1Synergy Semiochemicals Corp. Canada.
2Instituto de Ecologia, Pesquerias y Oceanografia del Golfo de Mexico (Epomex), Universidad Autónoma de Campeche. México.
3Parque Nacional Volcán Nevado de Colima. México.
*Autor para correspondencia; correo-e: clmagraz@uacam.mx
*Corresponding author; e-mail: clmagraz@uacam.mx
Abstract
The concept of forest health is associated with an anthropocentric view of agronomic origin, focused on pest control. In contrast, the concept of ecosystem health is closely tied to ecological functionality, in which herbivorous insects play a crucial role in key processes such as organic matter recycling and natural succession. From this perspective, the use of the term “pest” is inappropriate for describing ecological dynamics in unmanaged ecosystems. The application of both approaches, forest health and sanitation, is analyzed through the review and comparison of three documented case studies in protected ecosystems in Mexico: (I) The phytosanitary contingency caused by ambrosial beetles in the mangroves of Atasta, Campeche; (II) The change of strategy against bark strippers in Nevado de Colima National Park, and (III) Mortality processes in Abies religiosa forests in the Central region of the country. These cases represent ecosystems with different compositions, dynamics, and phytosanitary management trajectories. The objective was to examine the implementation of both approaches in real scenarios and identify the management decisions taken and their consequences within their respective ecological and regulatory frameworks. This review provides a comparative basis for analyzing the practical and ecological implications of forest health and sanitation approaches, especially in areas where conservation and ecosystem functionality are priorities. It is a critical reflection on the contextualized use of both concepts, reinforcing their theoretical value and applicability in forest management.
Keywords: Abies religiosa (Kunth) Schltdl. & Cham., ecological functionality, herbivorous insects, mangroves, Pinus spp., forest management practices.
Resumen
El concepto de sanidad forestal se asocia a una visión antropocéntrica, de origen agronómico, centrada en el control de plagas. En contraste, el concepto de salud del ecosistema se vincula con la funcionalidad ecológica, en la que los insectos herbívoros participan en procesos clave como el reciclaje de materia orgánica y la sucesión natural. Desde esta perspectiva, el uso del término “plaga” resulta inapropiado para describir dinámicas ecológicas en ecosistemas no manejados. Se analiza la aplicación de ambos enfoques, sanidad y salud forestal, mediante la revisión y comparación de tres estudios de caso documentados en ecosistemas protegidos de México: (I) La contingencia fitosanitaria por escarabajos ambrosiales en los manglares de Atasta, Campeche; (II) El cambio de estrategia ante descortezadores en el Parque Nacional Volcán Nevado de Colima; y (III) los procesos de mortalidad en bosques de Abies religiosa en la región central del país. Estos casos representan ecosistemas con distinta composición, dinámica y trayectoria de manejo fitosanitario. El objetivo fue examinar la implementación de ambos enfoques en escenarios reales, identificar las decisiones de manejo adoptadas y sus consecuencias dentro de sus respectivos marcos ecológicos y normativos. Esta revisión ofrece una base comparativa para analizar las implicaciones prácticas y ecológicas de los enfoques de sanidad y salud forestal, especialmente, en áreas donde la conservación y la funcionalidad ecosistémica son prioritarias. Es una reflexión crítica sobre el uso contextualizado de ambos conceptos, en el que se refuerza su valor teórico y su aplicabilidad en la gestión forestal.
Palabras claves: Abies religiosa (Kunth) Schltdl. & Cham., funcionalidad ecológica, insectos herbívoros, manglares, Pinus spp., prácticas de manejo forestal.
Introduction
In Mexico, forest health is based on the Integrated Forest Pest Management (IFPM) approach, which aims to control populations of pest organisms through coordinated strategies based on a cost-benefit analysis, without distinguishing between different types of forest scenarios (Cibrián Tovar & Macías Sámano, 2021). On the other hand, the concept of forest health applies to ecosystems where interactions between biotic and abiotic components develop naturally and continuously. These interactions have shaped the structure and functionality of forests over millions of years. In contrast, in settings such as plantations, nurseries, or urban tree plantations (Figure 1), these interactions are interrupted or altered by human interventions.
Salud = Health; Ecosistemas = Ecosystems; Sanidad = Sanitation; Sistemas antropogénicos = Anthropogenic systems. Modified from Cibrián Tovar (2021).
Figure 1. Forest scenarios and their relationship with the concepts of ecosystems, anthropogenic systems, health, and sanitation.
An ecosystem is considered healthy when its fundamental processes —such as the hydrological cycle, biogeochemical cycles, energy flow, and community dynamics—along with natural disturbances such as fire or herbivore outbreaks, operate within their historical ranges of variability, without compromising biodiversity or resilience (Folke et al., 2004; Kolb et al., 1995). Teale and Castello (2011) define a healthy forest ecosystem as one that maintains a balance between growth and mortality, thereby ensuring its structural sustainability. Tree mortality is an essential part of forest dynamics, and must be assessed at appropriate spatial and temporal scales, based on species biology (Harmon & Bell, 2020), in fact, the timescales and spatial scales governing these processes are often hundreds to thousands of years operating at a landscape level (Trumbore et al., 2015). In contrast, sanitary approaches respond to annual events and are applied with a reactive logic, similar to that of agroecosystems.
Authors such as Raffa et al. (2009) have warned that human values are often imposed on ecological processes, generating distortions in the perception of what constitutes an ecological problem. Thus, the term “pest” becomes a construct linked to productive rather than ecological objectives. For example, native debarking insects are considered pests when they cause massive mortality in plantations or in managed forests, although in natural forests they play a key role in succession processes. In the absence of anthropogenic pressures, forests maintain dynamic balances between trees and bark strippers, generating successional mosaics as documented in Western Canada (Alfaro et al., 2015).
In the absence of scientific and technical tools tailored to the ecosystem, institutional responses often resort to the sanitary approach, which is more immediate but less compatible with natural processes (Lindenmayer et al., 2025).
The objective of this article is to analyze and discuss the scope of the concepts of forest health and sanitation, based on their concrete application in three case studies located in protected ecosystems in Mexico: (I) The phytosanitary contingency caused by ambrosia beetles in mangroves of Atasta, Campeche; (II) The impact of a natural outbreak of bark strippers in Nevado de Colima Volcano National Park, and (III) Phytosanitary processes applied in Abies religiosa (Kunth) Schltdl. & Cham. forests in the Center of the country. These cases represent protected ecosystems with different disturbance regimes, floristic composition and history of phytosanitary intervention. This diversity allows us to contrast how the concept of pest has been interpreted and applied under the sanitary approach in different contexts, as well as its implications on forest structure, functionality and management criteria.
Cibrián Tovar (2021) identifies eight forest scenarios, classified according to the degree of human intervention: (1) Protected Natural Areas, (2) Natural forests without management program, (3) Natural forests with management programs, (4) Reforestation for ecological or economic purposes, (5) Commercial plantations, (6) Forest germplasm units, (7) Forest nurseries, and (8) Urban and suburban trees (Figure 1). The first two scenarios are ecosystems that function autonomously, with minimal or no human intervention. In contrast, the remaining six do require it for their management and permanence, since they are anthropogenic systems. In accordance with what was established in the introduction, this classification suggests that the concept of forest health is more applicable to natural ecosystems without management plans, since self-regulated ecological processes prevail. In contrast, the term forest sanitation is more relevant to anthropogenic systems, where the aim is to maintain desired conditions by controlling organisms (Arriola-Padilla et al., 2020; Manzo-Delgado et al., 2014; Secretaría de Medio Ambiente y Recursos Naturales [Semarnat], 2018).
Forest phytosanitary actions aim to control bark strippers and wood borers, which involve the removal and destruction of insects using physical, mechanical, or chemical methods. Actions include felling affected trees, debarking or cutting sections of the trunk, with the objective of exposing insects or removing the affected material from the ecosystem (Comisión Nacional Forestal [Conafor], 2015).
When this strategy is applied in natural ecosystems, it can have adverse effects on biodiversity, particularly on natural enemies and competitors of the target insects. It also affects soil health, as well as the structure and functionality of ecosystems (Lindenmayer et al., 2025). As a result, ecosystem services are compromised (Hagge et al., 2019; Lindenmayer et al., 2025; Pacheco-Aquino & Duran, 2023).
Case 1. Phytosanitary contingency in the mangrove ecosystem, San Antonio Cárdenas, Carmen municipality, Campeche
In the Laguna de Términos Flora and Fauna Protection Area, losses of 6 945 hectares were recorded during the period 1990-2010. In the last 10 years, the Atasta area has experienced changes in hydrology due to anthropogenic disturbances and meteorological phenomena, which have caused hypersalinity and anoxia conditions in the interstitial water of the mangroves and inland lagoons (Agraz Hernández et al., 2015).
In 2022, the National Forest Commission documented mangrove mortality Southwest of Laguna de Términos on more than 2 000 hectares. The damage was attributed to ambrosial beetles: Euplatypus parallelus Bright & Skidmore, 2002 and Coptoborus pseudotenuis (Schedl, 1936). As a result, the institution issued a phytosanitary alert in the states of Tabasco, Campeche, Yucatan and Quintana Roo (Conafor, 2022) and began sanitation work. According to testimonies of local inhabitants, the actions included the felling of trees, the bagging of residual material, and the application of direct injections to the trees (Agraz Hernández et al., 2016).
In view of these scenarios, Semabicce (Secretariat of Environment, Biodiversity, Climate Change and Energy of Campeche) with the support of the Institute of Ecology, Fisheries and Oceanography of the Gulf of Mexico (Epomex) of the Autonomous University of Campeche conducted an environmental diagnosis of the conditions of these mangroves (Agraz Hernández et al., 2016), with an ecosystem approach, in which the control factors, habitat structure and composition were evaluated, and insect herbivory was also included as a component to be analyzed (Figure 2).
Source: Agraz-Hernández et al. (2022).
Figure 2. Conceptual model of mangrove habitat.
Habitat structure and control factors that give rise to various processes in the habitat, resulting in various ecosystem services.
The diagnostic results showed significant spatial variations with respect to the physicochemical conditions of the interstitial water (temperature, pH, redox potential, and salinity) in the mangrove forests (live and dead) located in 769 ha of degraded mangrove forest. In a similar way, hypertrophic conditions with high phosphate concentrations were identified, which potentially alter soil biogeochemical processes and affect nutrient uptake by plants. These sulfate concentrations indicated a limited influence of seawater, resulting in the release of sulfur and hydrogen sulfide.
The physiognomy of the mangroves was composed of 35.7 % of riparian type and 26.2 % of edge; physiognomies were considered as the original ones. In addition, four types of physiognomies were observed: (a) Edge with basin tendency, representing 9.5 %; (b) Basin scrubland, with 4.8 %; (c) Basin, with 14.3 %; and (d) Scrubland, with 14.3 %. The latter reflect the loss of the structure and function of the original vegetation, attributed to hydrological changes, alterations in the topographic level, increased salinity and anoxia. The Normalized Difference Vegetation Index (NDVI) for 2021 and 2022 estimated as part of the diagnosis, indicated that the mass mortality event could have occurred in 2020, following a long stress process (Agraz Hernández et al., 2016).
Herbivory was assessed in a total of 439 trees; of these, 47.4 % exhibited non-recent mortality, 49.4 % were recorded as healthy, and 3.2 % showed signs of decline, with death mainly occurring in a downward manner. Avicennia germinans (L.) L. had the highest number of declining individuals (11) and a total of 183 deaths (11); Laguncularia racemosa (L.) C. F. Gaertnhad 32 deaths and none in decline (Agraz Hernández et al., 2016).
Signs and symptoms of the saproxylic borer beetles were common in the dead sections of A. germinans, and only three living individuals presented borings by ambrosial beetles in living tissue, which were always accompanied by resin extraction. However, their attacks were unsuccessful, and no remains or developmental stages of the insects were observed. This process of expelling borer insects using resin is a defense mechanism (Franceschi et al., 2005).
With the integration of the evaluated control parameters, forest structure and cover change, together with herbivory, the diagnosis confirmed that the mortality and ecological successions of vegetation are mainly caused by physicochemical disturbances and water hydrology. This has resulted in the recycling of organic materials; thus, the wood borer insects profit from the availability of dead material, which renders them ecological indicators of the vegetation’s conditions rather than their cause (Agraz Hernández et al., 2016).
Case 2. Pine bark beetles in the Nevado de Colima Volcano National Park (PNVNC)
At the Nevado de Colima Volcano National Park (PNVNC, for its Spanish acronym), the management of pests such as pine bark beetle insects follows regulations that establish specific measures for their prevention, control, and handling (Conafor, 2015). Between 1963 and 2003, the Pinus hartwegii Lindl. forests of the PNVNC underwent annual clear-cutting to combat pine bark beetle insects in accordance with current regulations. However, since 2004, those responsible for the park's management program (Comisión Nacional de Áreas Naturales Protegidas [Conanp], 2006) have questioned the effectiveness of these practices and pointed out the annual recurrence of the pest, as well as the associated damages, such as soil erosion, loss of forest mass, organic matter and bird species, and soil degradation (Jones et al., 2025; Sánchez-Ramos et al., 2022; Villalobos, 2021). In response, they suspended sanitation and adopted strategies such as reforestation, livestock eradication, fire management, park use limitations, and water resource management. These actions resulted in a 24.9 % increase in the forest area, according to satellite evaluations conducted between 1999 and 2023 (Villalobos Echevarría, 2023) (Figure 3).
Source: Villalobos Echevarría (2023).
Figure 3. Comparison of high-mountain vegetation cover in the PNVNC between 2007 and 2023 based on satellite images.
The increase in the vegetation area and the permanence of standing dead trees on the ground of the PNVNC have generated positive changes in the soil’s nutrient content (Villalobos, 2021) and in biodiversity, particularly among resident and migratory birds (Sánchez-Ramos et al., 2022). Empirical knowledge and research conducted in the PNVNC have consolidated its management policy, supporting the elimination of sanitation activities.
Case 3. Sanitation in Abies religiosa forests in central Mexico
Hernández-Álvarez et al. (2021) compiled studies on the ecological and floristic aspects of Abies religiosa forests in the country’s Volcanic Transverse Axis; the authors highlight the lack of basic information necessary to propose and establish management and conservation strategies in these forests.
The case of Desierto de los Leones, located in the Cuajimalpa de Morelos and Álvaro Obregón municipalities of Mexico City, sets an important guideline to understand the great complexity and dynamics of the historical decline and death of this type of forest in central Mexico (Ciesla & Macías-Sámano, 1987; González-Medina et al., 2010).
Initially, bark beetle insects and certain diseases were blamed as the primary mortality factors (Gómez-Pineda et al., 2022). Even as early as in the 1980s, continuous sanitation against these insects was already being carried out (Vázquez-Soto, 1988). The mortality that led to the almost total disappearance of A. religiosa in the park was triggered decades ago by the constant incidence of oxidizing gases from Mexico City, coupled with a series of biotic and abiotic factors (Ciesla & Macías-Sámano, 1987; González-Medina et al., 2010).
For several years, the overwintering area of the monarch butterfly has experienced a decline in the population of A. religiosa, which has been attributed to bark beetle insects. Consequently, sanitation efforts have long been carried out to control them (Garduño-Bernal, 2011). Ironically, however, losses of wooded area are associated with these reclamations (Manzo-Delgado et al., 2014). Similar tree mortality is occurring at the El Chico National Park, where bark beetle have been identified as the cause, and remediation efforts have been initiated to control them (Conafor, 2025).
In Mexico, similar attack behaviors to those occurring on pines have been attributed to bark beetles on A. religiosa; however, this is incorrect. On the one hand, the defenses against bark beetles in Abies spp. are very different from those found in pines (Macías-Sámano, 2001); likewise, the main species of bark beetles that colonize Abies spp. lack a pheromone aggregation system. Therefore, they do not produce infestation centers and are hardly directly responsible for the death of trees (Furniss & Johnson, 2002; Macías-Sámano et al., 1998a, 1998b; Macías-Sámano & Borden, 2000; Wright et al., 1984).
For the reasons described above, it should be stressed that the death of A. religiosa is a complex process in which many factors intervene, among them the biology and dynamics of the species (Hernández-Álvarez et al., 2021), the effects of climate change (Gómez-Pineda et al., 2022), and anthropic impacts (Hernández-Álvarez et al., 2021; Manzo-Delgado et al., 2014) which together stress and predispose trees to successful colonization by various organisms, including bark beetles, all of which leads to their death.
Conclusions
The comparison between the three cases enables the identification of patterns in the application of the health approach and its implications on ecosystem functionality. Although the ecological contexts are diverse, in all cases there is a homogeneous regulatory response based on direct insect control, with different levels of effectiveness and recognition of the ecological role of the organisms involved. Table 1 summarizes the key characteristics of each case, allowing for a comparison between the ecosystem types, the affected species, the implemented actions, and the resulting outcomes.
Table 1. Comparison between three case studies in protected ecosystems in Mexico, based on ecosystem type, affected organism, phytosanitary intervention applied, dominant approach, and observed results.
Criterion |
Atasta mangroves (Campeche) |
Nevado de Colima (Jalisco) |
Abies religiosa (Kunth) Schltdl. & Cham. forests (Central México) |
Type of ecosystem |
Tropical mangrove |
High mountain forest |
Temperate montane forest |
Herbivore species |
Ambrosial beetles |
Pinus hartwegii Lindl. bark-stripping beetles |
Abies religiosa (Kunth) Schltdl. & Cham. bark-stripping beetles |
Type of intervention applied |
Felling and burning of infested trees |
Change of strategy: monitoring without direct intervention |
Systematic sanitation |
Dominant approach |
Sanitary, without functional diagnosis |
Transition to a health approach |
Traditional sanitary |
Evaluation of results |
Limited effects; recurrence of symptoms |
Structural recovery and increased coverage |
Persistence of the problem; inconclusive results |
Consideration of the ecological role of insects |
Not considered |
Considered and evaluated |
Ignored in the regulations |
Implications for forest management |
Generalized intervention without ecological validation |
Passive management is adopted with ecological basis |
Application of the standard without ecological contextualization |
The analysis of the three cases reveals that the phytosanitary actions applied in protected ecosystems have followed a sanitary approach that focuses on an immediate and corrective response aimed at eliminating insects considered pests without evaluating their ecological function or the collateral effects of such interventions. This finding aligns with Lindenmayer et al. (2025), who suggest that the increase in disturbances, intensified by climate change, has promoted intensive management schemes with weak technical support.
The “sanitation” measures are limited in duration and spatial scope (Billings, 2011). Current regulations in Mexico (e. g., NOM-019-SEMARNAT-2017) do not differentiate between forest scenarios, nor do they establish adapted preventive strategies. In contrast, such countries as the United States of America and Canada have adopted schemes based on forest structure and composition to reduce vulnerability to outbreaks (Guldin, 2011; Safranyik & Wilson, 2006).
Therefore, it is recommended that the phytosanitary regulatory framework be revised and updated to incorporate ecological criteria that recognize the functional role of herbivorous insects and establish differentiated strategies according to the ecosystem context and conservation objectives.
The comparative review indicates that sustainable forest management necessitates an understanding of the dynamics of disturbances within their ecological context, avoiding homogeneous interventions, and prioritizing the conservation of ecosystem functionality through approaches grounded in robust ecological science.
Acknowledgments
The authors are grateful to Sonia Navarro, PhD; Luis E. Sánchez, PhD, and Alonso Villalobos, MSc, for the discussions and data shared for this paper.
Conflict of interest
The authors declare that there is no conflict of interest in sharing and publishing the information contained in this article.
Contribution by author
Jorge E. Macías Sámano: development, analysis, and revision of the manuscript; Claudia M. Agraz Hernández and José Villa Castillo: contribution with data and discussions that allowed for a clear and substantiated product.
References
Agraz Hernández, C. M., Osti Sáenz, J., Chan Keb, C., Arriaga Martínez, V., Acosta Velázquez, J., Castillo Domínguez, S., Gómez Ramírez, D., Reyes Castellanos, R., Conde Medina, P., y Martínez Kumul, J. (2015). Grado de conservación del ecosistema de mangle en la Laguna de Términos, Campeche. Propuesta de políticas ambientales y acciones de restauración. En J. Ramos Miranda y G. J. Villalobos Zapata (eds.), Aspectos socioambientales de la región la Laguna de Términos (1ra edición, pp. 117-132). Universidad Autónoma de Campeche. https://www.researchgate.net/publication/337198582_Grado_de_conservacion_del_ecosistema_de_mangle_en_la_laguna_de_Terminos_Campeche_Propuesta_de_politicas_ambientales_y_acciones_de_restauracion
Agraz Hernández, C. M., Chan Keb, C. A., Osti Sáenz, J., Reyes Castellanos, J. E., Gregorio Cortés, A., Chávez Barrera, J., Manzanilla, H., Lara-Flores, M., García-Chavarría, M., Acopa-Castro, S. M., Macías Samano, J. E., y Niño Domínguez, A. (2016). Estudio de diagnóstico para la atención a la contingencia fitosanitaria en el ecosistema de manglar en la localidad de San Antonio Cárdenas, del municipio de Carmen (Informe final). Centro de Estudios Geomáticos Ambientales y Marinos S. A. de C. V. http://dx.doi.org/10.13140/RG.2.2.21484.27521
Agraz-Hernández, C. M., Chan-Keb, C. A., Muñiz-Salazar, R., Pérez-Balan, R. A., Posada Vanegas, G., Manzanilla, H. G., Osti-Sáenz, J., & del Río Rodríguez, R. (2022). Pore water chemical variability and its effect on phenological production in three mangrove species under drought conditions in Southeastern Mexico. Diversity, 14(8), 668. https://doi.org/10.3390/d14080668
Alfaro, R. I., van Akker, L., & Hawkes, B. (2015, October). Characteristics of forest legacies following two mountain pine beetle outbreaks in British Columbia, Canada. Canadian Journal of Forest Research, 45(10), 1387-1396. https://doi.org/10.1139/cjfr-2015-0042
Arriola-Padilla, V. J., Domínguez-Vieyra, R., Pérez-Miranda, R., y Trejo-Ramírez, O. (2020). Legislación y normatividad para el control de plagas en áreas naturales protegidas en México: reto para la conservación de los ecosistemas. Áreas Naturales Protegidas Scripta, 6(2), 51-70. https://doi.org/10.18242/anpscripta.2020.06.0602.0004
Billings, R. F. (2011). Mechanical control of Southern pine beetle infestations. In R. N. Coulson & K. D. Klepzig (Eds.), Southern pine beetle II (pp. 399-413). United States Department of Agriculture. https://research.fs.usda.gov/treesearch/39089
Cibrián Tovar, D. (2021). Escenarios de manejo forestal. En D. Cibrián Tovar (Ed.), Fundamentos para el Manejo Integrado de Plagas Forestales MIPF (pp. 29-30). Universidad Autónoma Chapingo. https://sivicoff.cnf.gob.mx/ContenidoPublico/09%20Manuales%20t%C3%A9cnicos/Libro_Manejo%20Integrado%20de%20Plagas_MIP.pdf
Cibrián Tovar, D., y Macías Sámano, J. E. (2021). Marco conceptual y desarrollo del manejo integrado de plagas forestales (MIPF). En D. Cibrián Tovar (Ed.), Fundamentos para el Manejo Integrado de Plagas Forestales MIPF (pp. 3-12). Universidad Autónoma Chapingo. https://sivicoff.cnf.gob.mx/ContenidoPublico/09%20Manuales%20t%C3%A9cnicos/Libro_Manejo%20Integrado%20de%20Plagas_MIP.pdf
Ciesla, W. M., & Macías-Sámano, J. E. (1987). Desierto de los Liones: A forest in crisis. American Forest, 93, 11–12. https://www.osti.gov/biblio/7153151
Comisión Nacional de Áreas Naturales Protegidas. (2006). Programa de conservación y manejo Parque Nacional Volcán Nevado de Colima México (1ra ed.). Comisión Nacional de Áreas Naturales Protegidas. https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/libro_colima.pdf
Comisión Nacional Forestal. (2015). Manual para la identificación, manejo y monitoreo de insectos descortezadores del pino. Guía práctica para la identificación y manejo de los descortezadores del pino (1ra ed.) [Libro blanco]. Comisión Nacional Forestal. https://sivicoff.cnf.gob.mx/ContenidoPublico/09%20Manuales%20t%C3%A9cnicos/Manual%20identificacion%20descortezadores%20del%20pino.pdf
Comisión Nacional Forestal. (2022). Programa operativo estatal de sanidad forestal 2022 del estado de Campeche. Secretaría de Medio Ambiente y Recursos Naturales. https://sivicoff.cnf.gob.mx/ContenidoPublico/02%20Informes%20de%20acciones%20operativas/DiagnosticosEstatales/2022/Campeche.pdf
Comisión Nacional forestal. (7 de abril de 2025). CONAFOR atiende plaga de descortezadores en Hidalgo [Comunicado de prensa]. https://www.gob.mx/conafor/prensa/conafor-atiende-plaga-de-descortezadores-en-hidalgo
Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711
Franceschi, V. R., Krokene, P., Christiansen, E., & Krekling, T. (2005). Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167(2), 353-376. https://doi.org/10.1111/j.1469-8137.2005.01436.x
Furniss, M. M., & Johnson, J. B. (2002). Field guide to the bark beetles of Idaho and adjacent regions. University of Idaho. https://www.lib.uidaho.edu/digital/fwres/items/fwres201.html
Garduño-Bernal, N. (2011). Diagnóstico fitosanitario forestal Reserva de la Biósfera Mariposa Monarca en el Estado de México (Informe técnico). Gobierno del Estado de México. http://transparencia.edomex.gob. mx/sma/informacion/publicaciones/ARCHIVO20A18.pdf (fecha de acceso: 27 de febrero de 2011).
Gómez-Pineda, E., Hammond, W. M., Trejo-Ramírez, O., Gil-Fernández, M., Allen, C. D., Blanco-García, A., & Sáenz-Romero, C. (2022). Drought years promote bark beetle outbreaks in Mexican forests of Abies religiosa and Pinus pseudostrobus. Forest Ecology and Management, 505, Article 119944. https://doi.org/10.1016/j.foreco.2021.119944
González-Medina, R. E., Mendoza-Briseño, M., y Alvarado-Rosales, D. (2010, invierno). Exposición a ozono en relación a vitalidad en un bosque de oyamel (Abies religiosa (Kunth) Schltdl. & Cham). Madera y Bosques, 16(4), 7-19. https://doi.org/10.21829/myb.2010.1641157
Guldin, J. M. (2011). Silvicultural considerations in managing southern pines stands in the context of southern pine beetle. In R. N. Coulson & K. D. Klepzig (eds.), Southern pine beetle II (pp. 317-352). United States Department of Agriculture. https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs140/gtr_srs140.pdf
Hagge, J., Leibl, F., Müller, J., Plechinger, M., Soutinho, J. G., & Thorn, S. (2019). Reconciling pest control, nature conservation, and recreation in coniferous forests. Conservation Letters, 12(2), Article e12615. https://doi.org/10.1111/conl.12615
Harmon, M. E., & Bell, D. M. (2020). Mortality in forested ecosystems: suggested conceptual advances. Forests, 11(5), 572. https://doi.org/10.3390/f11050572
Hernández-Álvarez, A. G., Reyes-Ortiz, J. L., Villanueva-Díaz, J., & Sánchez-González, A. (2021). Variación en la estructura del bosque de Abies religiosa (Pinaceae), en diferentes condiciones de manejo y disturbio. Acta Botánica Mexicana, 128, Artículo e1752. https://doi.org/10.21829/abm128.2021.1752
Jones, G. M., Reid, D., Zulla, C., Williams, J., Hedwall, S., & Kirby, R. (2025). Mexican spotted owls use forest mosaics affected by timber harvest, insects, and wildfire. The Southwestern Naturalist, 69(2), 1-8. http://dx.doi.org/10.1894/0038-4909-69.2.3
Kolb, T. E., Wagner, M. R., & Covington, W. W. (1995). Forest health from different perspectives. In L. G. Eskew (Comp.), Forest health through silviculture: Proceedings of the 1995 National Silviculture Workshop (pp. 5-13). United States Department of Agriculture. https://research.fs.usda.gov/treesearch/23480
Lindenmayer, D., Zylstra, P., Hanson, C. T., Six, D., & DellaSala, D. A. (2025). When active management of high conservation value forests may erode biodiversity and damage ecosystems. Biological Conservation, 305, Article 111071. https://doi.org/10.1016/j.biocon.2025.111071
Macías-Sámano, J. E., Borden, J. H., Gries, R., Pierce Jr., H. D., Gries, G., & King, G. G. S. (1998a). Primary attraction of the fir engraver, Scolytus ventralis. Journal of Chemical Ecology, 24, 1049-1075. https://doi.org/10.1023/A:1022354503443
Macías-Sámano, J. E., Borden, J. H., Gries, R., Pierce Jr., H. D., & Gries, G. (1998b, December). Lack of evidence for pheromone-mediated secondary attraction in the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia, 95, 117-125. https://journal.entsocbc.ca/index.php/journal/article/view/481
Macías-Sámano, J. E., & Borden, J. H. (2000). Interactions between Scolytus ventralis and Pityokteines elegans (Coleoptera: Scolytidae) in Abies grandis. Environmental Entomology, 29(1), 28-34. https://doi.org/10.1603/0046-225X-29.1.28
Macías-Sámano, J. E. (2001). Mediación semioquímica entre insectos descortezadores y árboles de coníferas. En A. L. Anaya, F. J. Espinosa-García & R. Cruz-Ortega (Eds.), Relaciones químicas entre organismos: Aspectos básicos y perspectivas de aplicación (pp. 459-503). Editorial Plaza y Valdez, S. A. de C. V. https://books.google.com.mx/books?id=8Gt7CoKx3W4C&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Manzo-Delgado, L., López-García, J., & Alcántara-Ayala, I. (2014). Role of forest conservation in lessening land degradation in a temperate region: The Monarch Butterfly Biosphere Reserve, Mexico. Journal of Environmental Management, 138, 55-66. https://doi.org/10.1016/j.jenvman.2013.11.017
Pacheco-Aquino, G., & Duran, E. (2023). Tree canopy patterns in a temperate forest in Oaxaca, Mexico after bark beetle outbreaks: Implications for ecological resistance and resilience. Forest Ecology and Management, 542, Article 121099. https://doi.org/10.1016/j.foreco.2023.121099
Raffa, K. F., Aukema, B., Bentz, B. J., Carroll, A., Erbilgin, N., Herms, D. A., Hicke, J. A., Hofstetter, R. W., Katovich, S., Lindgren, B. S., Logan, J., Mattson, W., Munson, A. S., Robison, D. J., Six, D. L., Tobin, P. C., Townsend, P. A., & Wallin, K. F. (2009). A Literal Use of “Forest Health” Safeguards against Misuse and Misapplication. Journal of Forestry, 107(5), 276-277. https://doi.org/10.1093/jof/107.5.276
Safranyik, L., & Wilson, B. (2006). The mountain pine beetle. A synthesis of biology, management, and impacts on lodgepole pine [White paper]. Canadian Forest Service. https://publications.gc.ca/collections/collection_2012/rncan-nrcan/Fo144-4-2006-eng.pdf
Sánchez-Ramos, L. E., Bravo Jiménez, A. M., y Ruíz García, A. A. (2022). Árboles muertos en pie, el descortezador y su dinámica con las aves. Patronato del Nevado de Colima y Cuencas Adyacentes, A. C. http://dx.doi.org/10.13140/RG.2.2.21810.31686
Secretaría de Medio Ambiente y Recursos Naturales. (2018). NORMA Oficial Mexicana NOM-019-SEMARNAT-2017, Que establece los lineamientos técnicos para la prevención, combate y control de insectos descortezadores. Diario Oficial de la Federación. https://www.dof.gob.mx/nota_detalle.php?codigo=5516918&fecha=22/03/2018#gsc.tab=0
Teale, S. A., & Castello, J. D. (2011). The past as key to the future: a new perspective on forest health. In J. D. Castello & S. A. Teale (Eds.), Forest health. An integrated perspective (pp. 3-16). Cambridge University Press. https://doi.org/10.1017/CBO9780511974977.002
Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349(6250), 814-818. https://doi.org/10.1126/science.aac6759
Vázquez-Soto, J. (1988). Los tratamientos silvícolas del Desierto de los Leones: Sus fundamentos [Libro blanco]. Comisión Coordinadora para el Desarrollo Rural y Departamento del Distrito Federal.
Villalobos Echevarría, A. (2023). Análisis espaciotemporal de la alta montaña del Complejo Volcánico de Colima: Una mirada histórica a la alta montaña del Parque Nacional Nevado de Colima en los ojos de Landsat, 3000-4260 msnm [Reporte técnico]. Patronato del Nevado de Colima y Cuencas Adyacentes.
Villalobos, A. (2021). Soil geochemistry characterization and climate vulnerability projections to bark beetle-pine dynamics at “Volcán Nevado de Colima”, Mexico [Master Thesis research, Utrecht University]. Utrecht University Repository. https://studenttheses.uu.nl/handle/20.500.12932/1282
Wright, L. C., Berryman, A. A., & Wickman, B. E. (1984). Abundance of the fir engraver, Scolytus ventralis, and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by the Douglas-fir tussock moth, Orgyia pseudotsugata. The Canadian Entomologist, 116(3), 293-305. https://doi.org/10.4039/Ent116293-3
Todos los textos publicados por la Revista Mexicana de Ciencias Forestales –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.