Revista Mexicana de Ciencias Forestales Vol. 16 (91)
Septiembre - Octubre (2025)
DOI: https://doi.org/10.29298/rmcf.v16i91.1558 Research note Diversity of parasitic plants associated with the tree canopy on the Universidad Intercultural del Estado de Guerrero campus Diversidad de plantas parásitas asociadas al dosel del arbolado del campus de la Universidad Intercultural del Estado de Guerrero
Marisa Silva Aparicio1*, Jolissa Rosas Altamirano1, Bernardo López López1 |
Fecha de recepción/Reception date: 19 de febrero de 2025.
Fecha de aceptación/Acceptance date: 24 de julio de 2025.
_______________________________
1Programa de Ciencias y Medio Ambiente. Universidad Intercultural del Estado de Guerrero. México.
*Autor de correspondencia; correo-e: marucha21048@gmail.com
*Corresponding author; e-mail: marucha21048@gmail.com
Abstract
The diversity of parasitic species and their hosts was estimated on the campus of the Universidad Intercultural del Estado de Guerrero (Intercultural University of the State of Guerrero, UIEG). Through surveys of different vegetation fragments, parasitic plants were visually identified, and their abundance, height above ground (m), and diameter (cm) were recorded. The latter measurement was categorized into three groups: small (1 to 15 cm), medium (16 to 30 cm), and large (31 to 60 cm or more). The normal diameter (Nd), total height (Th), and crown diameter (Cd) of the hosts were recorded. Samples of the parasitic and host species were collected for taxonomic identification. Species accumulation curves were constructed to estimate sampling effort using the EstimateS v.9.1 software. Alpha diversity (Shannon-Wiener -H’-, Simpson, and effective species number) was evaluated. In addition, the mensuration variables were correlated with the abundance of parasitic plant taxa. Seventy-nine hosts from eight taxa belonging to six families (Fagaceae, Clethraceae, Cupressaceae, Betulaceae, Solanaceae and Asteraceae) were recorded. Five parasitic species from four families (Santalaceae, Bromeliaceae, Loranthaceae, and Convolvulaceae) were identified. The diversity of parasite species found in this study is low (H'=1.25, five sp.) and represents 12.5 % of the richness cited for the state of Guerrero.
Keywords: Abundance, diversity, host, mistletoe, Struthanthus interruptus (Kunth) G. Don, mensuration variables.
Resumen
Se estimó la diversidad de especies parásitas y sus hospederos en el campus de la Universidad Intercultural del Estado de Guerrero (UIEG). A través de recorridos en diferentes fragmentos de vegetación, se reconocieron visualmente a las plantas parásitas y se registró su abundancia, altura sobre el suelo (m) y diámetro (cm). Este último fue categorizado en tres grupos: pequeño (de 1 a 15 cm), mediano (de 16 a 30 cm) y grande (de 31 a 60 cm o más). De los hospederos se registró el diámetro normal (Dn), la altura total (At) y el diámetro de copa (Dc). Se recolectaron muestras de las especies parásitas y hospederas para su identificación taxonómica. Se construyeron curvas de acumulación de especies para estimar el esfuerzo de muestreo mediante el programa EstimateS v.9.1. Se evaluó la diversidad alfa (Shannon-Wiener -H’-, Simpson y el número efectivo de especies). Además, se hizo la correlación de las variables dasométricas con la abundancia de los taxa de plantas parásitas. Se registraron 79 hospederos de ocho taxones, pertenecientes a seis familias (Fagaceae, Clethraceae, Cupressaceae, Betulaceae, Solanaceae y Asteraceae). Se identificaron cinco especies parásitas de cuatro familias (Santalaceae, Bromeliaceae, Loranthaceae y Convolvulaceae). La diversidad de especies parásitas registrada en este trabajo es baja (H’=1.25, cinco sp.) y representa 12.5 % de la riqueza citada para el estado de Guerrero.
Palabras clave: Abundancia, diversidad, hospedero, muérdago, Struthanthus interruptus (Kunth) G. Don, variables dasométricas.
Development of the topic
Forests are nature's most diverse ecosystems and provide a wide range of economic, social, environmental, and cultural goods and services to the human population (Armenteras & Rodríguez-Eraso, 2014). However, disturbances affect their structure and, consequently, their ecological functions. In addition, they are vulnerable to attack by certain pest plants such as mistletoe, which, despite possessing photosensitive pigments, have developed parasitic habits, making them partially or totally dependent on their host (Queijeiro-Bolaños & Cano-Santana, 2015). Some epiphytes, when they grow excessively, can limit sunlight penetration and create unfavorable conditions for host trees (Valenzuela-Núñez et al., 2021). Because of this, they have been called “structural parasites” (Benzing, 1979). These organisms have long been of public concern, as they cause damage to forest, fruit, and ornamental species, resulting in significant economic losses (Sánchez-Martínez & Reséndiz-Martínez, 2021). Furthermore, their distribution throughout all environments represents one of the main threats within forests, as they cause low productivity of wood and other products (Asiaín et al., 2008).
In the state of Guerrero, parasitic plants are widely distributed, and during the period 2012-2020 affected an area of 6 729 ha, where the main harmful species were Phoradendron velutinum (DC.) Nutt., Cladocolea sp., Psittacanthus calyculatus G. Don, P. schiedeanus (Cham. & Schltdl.) G. Don, and Tillandsia recurvata (L.) L.; moreover, the entity is classified as high risk (Comisión Nacional Forestal [Conafor], 2021).
Insufficient information on parasitic plants in the Montaña Region limits the planning of strategies for their control. The objective of this study is to evaluate the diversity of aerial parasitic species (on stems, leaves, or flowers) (Nickrent, 2002) and their tree hosts in the campus of the Intercultural University of the State of Guerrero (UIEG), as well as to identify the relationship between the abundance of these pest plants and the mensuration variables of their hosts.
The UIEG campus is located in La Ciénega, in the municipality of Malinaltepec, Guerrero, at kilometer 54 on the Tlapa-Marquelia highway, at 2 061 masl (Figure 1). The climate is temperate subhumid A(C)m and the vegetation corresponds to an oak-pine forest (Instituto Nacional de Estadística y Geografía [Inegi], 2020).
Rectoría = Administrative offices; Almacén = Storeroom; Auditorio = Auditorium; Biblioteca = Library; Laboratorio = Laboratory; Salones = Classrooms; Cancha 1 = Court 1; Comedor = Canteen; Humanidades = Humanities; Viveros = Nursery; Cancha 2 = Court 2.
Figure 1. Geographical location of the community of La Ciénega, Malinaltepec municipality, and of the parasitized hosts within the UIEG campus.
The hosts were selected directly from fragments of original vegetation (oak-pine forest) located on the UIEG campus, through surveys and with the aid of binoculars (model BN131056 Bushnell®). Trees with deformities, yellowed or wilted leaves caused by parasitic plants and structural parasites were visually identified. The latter belonged to the genus Tillandsia L. (Benzing, 1979), as the hosts had large quantities of them. Once identified, the infested individuals were georeferenced (model GRGPSMAP65S Garmin® GPS) (Figure 1).
The number of parasites per host was recorded, as well as the diameter in cm (using a model TP50ME Truper® tape measure), categorized as small (1-15 cm), medium (16-30 cm), and large (31-60 cm or more). In addition, the height (m) above ground level (AHAG), stem, or branch on which they were located was measured using a model 360PC Suunto® clinometer. The normal diameter (cm) of the hosts was measured with a model 283D Forestry Suppliers® diameter tape (Mostacedo & Fredericksen, 2000); the total height (m), with a model PM5/360PC Suunto® clinometer, and the crown diameter (m) with a model TP50ME Truper® measuring tape, from North to South and West to East, in order to average both measurements and avoid overestimating or underestimating them (Benavides-Meza & Fernández-Grandizo, 2012).
Specimens of the hosts and parasitic plants were collected for taxonomic identification following the method suggested by Lot and Chiang (1986). They were identified using specialized literature (Fonseca & Velázquez, 1998; Martínez-Ambriz, 2020; Pulido-Esparza et al., 2004; Valencia-Ávalos, 2010; Valencia-Ávalos et al., 2002) and the nomenclature was corroborated in the database at The World Flora Online (2025).
Accumulation curves for parasitic species were constructed using each host recorded per species as a sampling unit. To do this, the nonparametric Chao 2 estimator was used in the EstimateS v.9.1 software (Colwell & Elsensohn, 2014). Diversity was estimated using Shannon-Wiener indexes (H'), Simpson dominance (λ), and effective species numbers (0D, 1D, and 2D) (Moreno et al., 2011) (Table 1).
Table 1. Indexes used to calculate diversity.
Pi = Relative abundance of species i; nl = Natural logarithm; qD = Diversity; q = Diversity order: Total number of species = 0D; Number of abundant species = 1D = eH’, Number of very abundant species = 2D = .
The correlation analysis between the mensuration variables (Th, Cd, and Nd) of the hosts and abundance was performed using the R 4.3.3 software (Barrios, 2024).
The observed species (observed_S) and those calculated with the Chao 2 estimator indicated 100 % of the recorded parasitic taxa; i. e., the sampling effort was representative.
Seventy-nine hosts belonging to six families were identified; of the latter, Fagaceae was the best represented, with three species; while Clethraceae, Cupressaceae, Betulaceae, Solanaceae and Asteraceae had only one species (Table 2).
Table 2. Number of individuals of the host species of parasitic plants recorded at the UIEG campus and their mensuration variables.
Family |
Scientific name |
Common name |
Abundance |
Cd |
Th |
Nd |
Fagaceae |
Quercus candicans Née |
Oak |
17 |
10.5 |
14.1 |
37.8 |
Quercus martinezii C. H. Mull. |
White oak |
2 |
12.9 |
13.5 |
47.0 |
|
Quercus scytophylla Liebm. |
Red oak |
13 |
9.4 |
12.5 |
26.3 |
|
Clethraceae |
Clethra oleoides L. O. Williams |
Aguacatillo |
32 |
6.6 |
10.5 |
28.7 |
Cupressaceae |
Hesperocyparis benthamii (Endl.)Bartel |
Cypress or white cedar |
3 |
8.5 |
14.8 |
35.8 |
Betulaceae |
Alnus acuminata Kunth |
Andean alder |
8 |
7.3 |
13.1 |
23.2 |
Solanaceae |
Solanum diphyllum L. |
Twoleaf nightshade |
3 |
3.0 |
7.0 |
10.1 |
Asteraceae |
Verbesina fastigiata B. L. Rob. & Greenm. |
Tacote |
1 |
4.0 |
5.5 |
10.0 |
Cd = Crown diameter, Th= Total height, Nd = Normal diameter.
Of the 79 trees found at the UIEG campus, 32 belong to the species Clethra oleoides L. O. Williams, 17 to Quercus candicans Née, and 13 to Q. scytophylla Liebm. The rest of the taxa had fewer than 10 individuals each (Table 2). One hundred seventy-five parasitic plant individuals were recorded, Struthanthus interruptus (Kunth) G. Don being the most abundant, with 79 individuals (Table 3).
Table 3. Number of individuals per species and average height above ground (AHAG) of parasitic plants recorded on the UIEG campus.
Family |
Species |
Common name |
AHAG |
Number of individuals |
|||
Small |
Medium |
Large |
Total |
||||
Loranthaceae |
Struthanthus interruptus (Kunth) G. Don |
True mistletoe |
6.11 |
21 |
30 |
28 |
79 |
Bromeliaceae |
Tillandsia usneoides (L.) L. |
Spanish moss |
5.98 |
6 |
12 |
34 |
52 |
Santalaceae |
Phoradendron velutinum (DC.) Nutt. |
Graft |
11.4 |
5 |
8 |
15 |
28 |
Loranthaceae |
Psittacanthus schiedeanus (Cham. & Schltdl.) G. Don |
Cloud forest mistletoe |
8.2 |
3 |
3 |
9 |
15 |
Convolvulaceae |
Cuscuta sp. |
Dodder |
4.5 |
- |
- |
1 |
1 |
AHAG = Average height above ground.
The normal diameter of the parasitized individuals ranged from 4.9 to 79.3 cm and an average of 26.89±17.88 cm. The taxon with the highest average Nd was Quercus martinezii C. H. Mull., with 47 cm, followed by Q. candicans, with 37.8 cm, and Hesperocyparis benthamii (Endl.) Bartel with 35.8 cm. The other taxa had diameters of less than 30 cm.
For the height (Th) of the parasitized individuals, there was a range of 4.3 m to 22.5 m, with an average of 11.4±4.6 m. Cypress or white cedar (Hesperocyparis benthamii) had the highest average height (14.8 m), followed by oak (Quercus candicans), with 14.1 m; white oak (Q. martinezii), with 13.5 m, and alder (Alnus acuminata Kunth) at 13.1 m. The other species recorded average heights of less than 13.0 m.
Five species belonging to five genera and four families were identified among the parasitic plants; Loranthaceae was the best represented, with two species; for Bromeliaceae, Santalaceae, and Convolvulaceae, only one taxon was identified.
The average height above ground level (AHAG) at which the parasitic plants were located was 6.85±4.20 m. Phoradendron velutinum was found at an average height of 11.4 m of its host, followed by Psittacanthus schiedeanus at 8.2 m, and Struthantus interruptus, at 6.11 m. In addition, 49.7 % of the parasitic plants were large, 30.3 % were medium-sized, and 20.0 % were small (Table 3).
The Shannon-Wiener (H’) value for the diversity of parasitic species on the UIEG campus was 1.2, the dominance (λ) was 0.32, with a richness of five species (0D), three abundant (1D), and three very abundant (2D). Alnus acuminata and Clethra oleoides showed greater diversity of parasitic species (Table 4).
Table 4. Number of species (NS) and individuals of parasitic plants (NIPP) per host recorded at the UIEG campus.
Hosts |
Parasitical plants |
||||||
CSP |
PS |
PC |
SI |
TU |
NE |
NIPP |
|
Alnus acuminata Kunth |
- |
ü |
ü |
- |
ü |
3 |
18 |
Clethra oleoides L. O. Williams |
- |
ü |
- |
ü |
ü |
3 |
68 |
Hesperocyparis benthamii (Endl.) Bartel |
- |
- |
- |
- |
ü |
1 |
15 |
Quercus candicans Née |
- |
- |
ü |
ü |
ü |
3 |
32 |
Quercus martinezii C. H. Mull. |
- |
- |
- |
- |
ü |
1 |
21 |
Quercus scytophylla Liebm. |
- |
- |
ü |
ü |
- |
2 |
17 |
Solanum diphyllum L. |
ü |
- |
- |
ü |
- |
2 |
3 |
Verbesina fastigiata B. L. Rob. & Greenm. |
- |
- |
- |
ü |
- |
1 |
1 |
Total |
1 |
1 |
3 |
5 |
5 |
5 |
175 |
CSP = Cuscuta sp.; PS = Psittacanthus schiedeanus (Cham. & Schltdl.) G. Don; PC = Psittacanthus calyculatus G. Don; SI = Struthanthus interruptus (Kunth) G. Don; TU = Tillandsia usneoides (L.) L.
The Coefficient of correlation between normal diameter, height, and crown diameter and the abundance of parasitic plants considering all the evaluated trees was significant for Nd, with r=0.30 (p<0.01), followed by Cd, with r=0.29 (p<0.05). At the species level, Alnus acuminata exhibited an r=0.76 (p<0.05) in relation to Th, and Quercus sp. had an r=0.36 with a Cd (p<0.05); the rest of the variables showed no correlation (p>0.05), with values of r=0.3, r=0.2, and r=0.19, respectively. This indicates that an increase in the normal diameter, crown, or height of the host does not translate into an increase in the abundance of parasitic plants.
In the correlation, the mensuration variables of the most abundant hosts, such as Clethra oleoides, and the number of individuals were not significant (Nd=0.32, Th=0.19, Cd=0.25); likewise, no significant relationships were observed for the species Quercus candicans and Q. scytophylla.
The families and species recorded in this work have been documented by other authors like Galván-González et al. (2022). Regarding species diversity, the recorded diversity is relatively low (H'=1.25, S=5), given that 40 species from different families (Balanophoraceae, Cytinaceae, Krameriaceae, Lennoaceae, and Olacaceae) are cited for the state of Guerrero(Galván-González et al., 2022), and the species examined herein represent only 12.5 % of the wealth of this group in the state. Struthanthus interruptus, the most abundant pest plant in the campus trees, is considered a generalist species, as it attacks timber, fruit, and ornamental trees, and even other mistletoes; it is also widely distributed in Mexico in general and in the state of Guerrero in particular (Conafor, 2021).
The mensuration variables of the trees (height, crown diameter, and normal diameter) do not show a significant relationship with the abundance of parasitic species, which suggests that these variables do not affect their presence. However, Arriola-Padilla et al. (2013) point out that mensuration variables can hurt parasitic species; when the host's branches are thin, these plants do not have time to complete their biological cycle and die, whereby the number of their individuals is reduced. In addition, they also tend to compete for nutrients from the host. Likewise, García-Cuevas et al. (2020) mention that parasitic plants cause minimal damage when hosts are abundant, as these species tend to persist for longer periods.
Acknowledgments
The authors thank the social service students for their support in the sampling.
Conflict of interest
The authors declare that they have no conflict of interest.
Contribution by author
Marisa Silva Aparicio: design, organization, data analysis and drafting of the manuscript; Jolissa Rosas Altamirano: design, organization, information analysis and drafting of the manuscript; Bernardo López López: data analysis and revision of the manuscript.
References
Armenteras, D., y Rodríguez-Eraso, N. (2014). Dinámicas y causas de deforestación en bosques de Latino América: una revisión desde 1990. Colombia Forestal, 17(2), 233-246. https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a07
Arriola-Padilla, V. J., Velasco-Bautista, E., Hernández-Tejeda, T., González-Hernández, A., y Romero-Sánchez, M. E. (2013). Los muérdagos verdaderos del arbolado de la Ciudad de México. Revista Mexicana de Ciencias Forestales, 4(19), 34-45. https://doi.org/10.29298/rmcf.v4i19.377
Asiaín, A., Bartolomé, J., y Vega, I. (Eds.). (2008). Bosques, Árboles y Arbustos. Manual de especies ibéricas. WWF España. http://awsassets.wwf.es/downloads/especies_arboreas2_1.pdf
Barrios, M. (2024, abril 18). Correlación (4.3.3) [Software]. Rpubs by Studio. https://rpubs.com/manuelbarriosizas/correlacion
Benavides-Meza, H. M., y Fernández-Grandizo, D. Y. (2012, verano). Estructura del arbolado y caracterización dasométrica de la segunda sección del Bosque de Chapultepec. Madera y Bosques, 18(2), 51-17. https://doi.org/10.21829/myb.2012.182352
Benzing, D. H. (1979). Alternative interpretations for the evidence that certain orchids and bromeliads act as shoot parasites. Selbyana, 5(2), 135–144. http://www.jstor.org/stable/41759524
Colwell, R. K., & Elsensohn, J. E. (2014). EstimateS turns 20: statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecografía, 37(6), 609-613. https://doi.org/10.1111/ecog.00814
Comisión Nacional Forestal. (2021). Diagnóstico fitosanitario del Estado de Guerrero [Libro blanco]. Comisión Nacional Forestal. https://sivicoff.cnf.gob.mx/ContenidoPublico/02%20Informes%20de%20acciones%20operativas/DiagnosticosEstatales/2021/Guerrero.pdf
Fonseca, R. M., y Velázquez, E. (1998). Betulaceae (Fascículo 7). Flora de Guerrero. Facultad de Ciencias, Universidad Nacional Autónoma de México. https://www.biodiversitylibrary.org/item/248302#page/3/mode/1up
Galván-González, L. G., Cerros-Tlatilpa, R., Flores-Morales, A., Caspeta-Mandujano, J. M., y Flores-Castorena, Á. (2022). Diversidad y riqueza de plantas parásitas del estado de Morelos, México. Botanical Sciences, 100(3), 729-747. https://doi.org/10.17129/botsci.2964
García-Cuevas, X., Mendoza-Muñoz, J. Á., Hernández-Ramos, J., García-Magaña, J. J., y Hernández-Ramos, A. (2020). Relaciones alométricas para predecir variables dasométricas de Chacteviga (Caesalpinia platyloba S. Watson) en Quintana Roo, México. Ecosistemas y Recursos Agropecuarios, 7(3), e2539. https://doi.org/10.19136/era.a7n3.2539
Instituto Nacional de Estadística y Geografía. (2020). Climas 1902-2011 [Cartas climatológicas]. Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463769361
Lot, A., y Chiang, F. (Eds). (1986). Manual de herbario. Administración y manejo de colecciones, técnicas de recolección y preparación de ejemplares botánicos. Consejo Nacional de la flora de México A. C. https://books.google.com.mx/books/about/Manual_de_herbario.html?id=BzUlAQAAMAAJ&redir_esc=y
Martínez-Ambriz, E. (2020). Familia Loranthaceae (Fascículo 214). Flora del Bajío y regiones adyacentes. Instituto de Ecología A. C., Centro Regional del Bajío. https://libros.inecol.mx/index.php/FB/catalog/view/2020.214/332/2285
Moreno, C. E., Barragán, F., Pineda, E., y Pavón, N. P. (2011). Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad, 82(4), 1249-1261. https://doi.org/10.22201/ib.20078706e.2011.4.745
Mostacedo, B., y Fredericksen, T. S. (2000). Manual de métodos básicos de muestreo y análisis en ecología vegetal. Proyecto de Manejo Forestal Sostenible BOLFOR. http://www.bio-nica.info/biblioteca/mostacedo2000ecologiavegetal.pdf
Nickrent, D. L. (2002). Parasitic plants of the world. In J. A. López-Sáez, P. Catalán & L. Sáez (Eds.), Parasitic plants of the Iberian Peninsula and Baleric Islands (pp. 7-27). Mundi-Prensa Libros, S. A. https://www.researchgate.net/profile/Jose-Antonio-Lopez-Saez/publication/235974843_Chapter2/links/0deec51516423b841c000000/Chapter2.pdf
Pulido-Esparza, V. A., López-Ferrari, A. R., & Espejo-Serna, A. (2004). Flora bromeliológica del estado de Guerrero, México: riqueza y distribución. Boletín de la Sociedad Botánica de México, (75), 55-104. https://www.redalyc.org/pdf/577/57707504.pdf
Queijeiro-Bolaños, M. E., y Cano-Santana, Z. (2015). Dinámica temporal de la infestación por muérdago enano (Arceuthobium globosum y A. vaginatum) en Zoquiapan (Parque Nacional Iztaccíhuatl-Popocatépetl), México. Ciencia UAT, 9(2), 6-14. https://doi.org/10.29059/cienciauat.v9i2.705
Sánchez-Martínez, G., y Reséndiz-Martínez, F. (2021). Aportaciones del INIFAP en materia de plagas y enfermedades forestales. Revista Mexicana de Ciencias Forestales, (Especial-1), 64-90. https://doi.org/10.29298/rmcf.v12iEspecial-1.1076
The World Flora Online. (2025, January 10). World Flora Online [Data set]. Global Strategy for Plant Conservation and Convention on Biological Diversity. https://www.worldfloraonline.org/
Valencia-Ávalos, S. (2010). Clethraceae (Fascículo 42). Flora de Guerrero. Universidad Nacional Autónoma de México. http://biologia.fciencias.unam.mx/plantasvasculares/PDF%20FLORAS/42%20Clethraceae.pdf
Valencia-Ávalos, S., Gómez-Cárdenas, M., y Becerra-Luna, F. (2002). Catálogo de Encinos del Estado de Guerrero, México [Libro técnico]. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación e Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias.
Valenzuela-Núñez, L. M., Hernández-Herrera, J. A., Martínez-Sifuentes, A. R., García-De La Peña, C., Alaniz-Rodríguez, L., y Briceño-Contreras, E. A. (2021). Efecto de Tillandsia usneoides (L.) (Bromeliaceae) sobre el contenido de carbohidratos en poblaciones naturales de mezquite (Prosopis laevigata Humb. & Bonpl. ex Willd. Fabaceae) en el ejido Emiliano Zapata, Durango, México. En J. C. Herrera-Salazar (Comp.), Importancia económica, social y ambiental de la diversidad biológica (pp. 147-154). Serie de Tópicos sobre diversidad biológica I. Universidad Juárez del Estado de Durango. https://www.researchgate.net/publication/357162906
Todos los textos publicados por la Revista Mexicana de Ciencias Forestales –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.