

DOI: 10.29298/rmcf.v16i91.1576

Artículo de investigación

Modelo alométrico para estimar la biomasa foliar de *Poliomintha longiflora* A. Gray

Allometric model for estimating the leaf biomass of *Poliomintha longiflora* A. Gray

Luis Miguel Toribio-Ferrer^{1*}, Eulalia Edith Villavicencio-Gutierrez², Antonio Cano-Pineda²

Fecha de recepción/Reception date: 19 de mayo 2025. Fecha de aceptación/Acceptance date: 3 de julio de 2025.

Resumen

Poliomintha longiflora, conocida como orégano liso, es una especie aromática silvestre de alto valor económico, utilizada en las industrias alimentaria, farmacéutica y cosmética. En regiones áridas y semiáridas del noreste de México representa un recurso forestal no maderable de relevancia para las localidades rurales donde crece. Con el objetivo de contribuir a su manejo técnico y sustentable, se desarrollaron modelos alométricos para estimar la biomasa foliar (Bf) a partir de variables dendrométricas estructurales. Se aplicó un muestreo destructivo de 271 individuos distribuidos en siete sitios naturales en los estados de Coahuila y San Luis Potosí. Para cada arbusto se registró la altura total (H), diámetro mayor (DM) y menor (DM) de copa, con los cuales se calculó el diámetro promedio de copa (Dp). Las hojas recolectadas fueron secadas y pesadas para obtener la variable dependiente (Bf). Se evaluaron ocho modelos alométricos mediante regresión por mínimos cuadrados ordinarios en el programa R. El modelo de potencia $Bf = 0.047028(Dp)^{1.347942}$ presentó el mejor ajuste, con un Coeficiente de determinación ajustado de 0.833, bajo error estándar (0.710 g) y sin inconsistencias respecto a los supuestos estadísticos clásicos del modelo. Estos resultados confirman que el Dp es un predictor confiable de la Bf en P. longiflora. La implementación de este modelo permite realizar estimaciones no destructivas, reducir costos y tiempos de muestreo y fortalecer los inventarios forestales. Además, constituye un aporte técnico valioso para el aprovechamiento racional y sostenible del orégano liso en ecosistemas de matorral desértico micrófilo.

Palabras clave: Biomasa foliar, modelos alométricos, no maderable, orégano liso, plantas arbustivas, plantas aromáticas.

Abstract

Poliomintha longiflora, commonly known as Mexican oregano, is a wild aromatic species of high economic value, utilized in the food, pharmaceutical, and cosmetic industries. In arid and semi-arid regions of Northeastern Mexico, it represents a non-timber forest resource of relevance for the rural localities where it grows. In order to contribute to its technical and sustainable management, allometric models were developed to estimate leaf biomass (LB) based on structural dendrometric variables. Destructive sampling was applied to 271 individuals distributed in seven natural sites in the states of Coahuila and San Luis Potosí. For each shrub, the total height (H) and largest (LCD) and smallest crown diameters (SCD) were recorded, from which the mean crown diameter (MCD) was calculated. The collected leaves were dried and weighed to obtain the dependent variable (LB). Eight allometric

¹Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. México.

²Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Saltillo. México.

^{*}Autor para correspondencia; correo-e: toryferrer@live.com

^{*}Corresponding author; e-mail: toryferrer@live.com

models were evaluated by means of ordinary least squares regression in R. The potency model $LB = 0.047028(MCD)^{1.347942}$ exhibited the best fit, with an Adjusted coefficient of determination of 0.833, a low standard error (0.710 g), and no inconsistencies with respect to the classical statistical assumptions of the model. These results confirm that the MCD is a reliable predictor of LB in P. longiflora. The implementation of this model enables non-destructive estimations, reducing costs and sampling times, and thereby strengthening forest inventories. Additionally, it constitutes a valuable technical contribution to the rational and sustainable use of smooth *oregano* in microphyllous desert scrub ecosystems.

Keywords: Leaf biomass, allometric models, non-timber, Mexican oregano, shrubby plants, aromatic plants.

Introducción

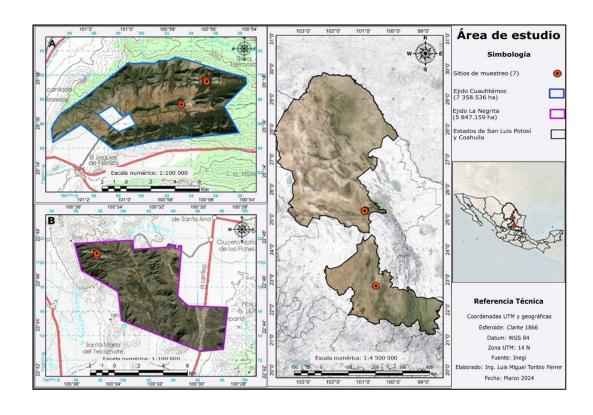
En las regiones áridas y semiáridas de México se han identificado aproximadamente 2 200 especies que proveen productos forestales no maderables (PFNM), de las cuales 450 tienen aplicaciones actuales en la economía de las localidades rurales (Tapia-Tapia & Reyes-Chilpa, 2008). De estos taxa, 95 % se destinan a usos domésticos, mientras que 25 % tienen una importancia comercial significativa en los sectores alimentario, industrial y farmacéutico (Villavicencio-Gutiérrez et al., 2021).

El orégano es un arbusto de gran valor aromático ampliamente reconocido por sus diversos usos, su importancia económica proviene de sus atributos como condimento culinario, planta medicinal y fuente de aceites esenciales (Rivero-Cruz et al., 2011). En particular, su aceite esencial tiene una gran importancia en los sectores industrial y farmacéutico, se utiliza en la producción de cosméticos, jabones, perfumes, saborizantes, entre otros productos (Koksal et al., 2010).

Poliomintha longiflora A. Gray, conocida como orégano liso, es una planta silvestre aromática que crece en el noreste de México, con distribución en los estados de Coahuila, San Luis Potosí, Nuevo León, Tamaulipas, así como en los límites de Querétaro e Hidalgo (Aranda Ruiz et al., 2009). Es un arbusto de hasta 1 m de altura, con brotes delgados, ascendentes o decumbentes; hojas elípticas de 7-15 mm, pubescentes en el envés y glabras en el haz. Las flores son axilares, con un cáliz de 7 a 12.5 mm y corola tubular de 27 a 35 mm (Díaz-de León et al., 2020). Presenta un patrón fenológico de rebrote anual tras el primer evento significativo de lluvia. Las

hojas se emplean, principalmente, como especia, en la extracción de aceites y como hierba culinaria en la gastronomía regional (Zheng & Wang, 2001).

Aranda Ruiz et al. (2009) llevaron a cabo una investigación para estimar la producción de biomasa de *P. longiflora*, en la cual obtuvieron un valor de 66 kg ha⁻¹ cada año; además, el análisis fitoquímico del aceite esencial permitió identificar 11 compuestos, entre los que destacaron el timol y el carvacrol. Diversas investigaciones han señalado que los compuestos carvacrol y timol, abundantes en el aceite esencial de *P. longiflora*, son los agentes clave detrás de su efecto antimicrobiano. Esta propiedad resalta su posible aplicación como conservante natural en la industria alimentaria (Paredes-Aguilar et al., 2007).


Los modelos alométricos son herramientas indirectas de gran utilidad para calcular variables como volumen, biomasa, contenido de carbono y peso fresco en taxa tanto leñosos, como herbáceos (Acosta-Mireles et al., 2002; Velasco Bautista et al., 2009). En el caso de especies no maderables, se han utilizado para evaluar la biomasa foliar de laurel y orégano (Villavicencio-Gutiérrez et al., 2018, 2020), la biomasa verde de candelilla (Hernández-Ramos et al., 2019) y la biomasa de especies arbóreas (Acosta-Mireles et al., 2002; Ares et al., 2002; Marroquín-Morales et al., 2023). Implementar este tipo de modelos en la planificación del uso de recursos vegetales favorece la reducción de costos y tiempos, al mismo tiempo que permite anticipar patrones de crecimiento o desarrollo. No obstante, los modelos deben cumplir ciertos criterios para garantizar la precisión y confiabilidad de los valores estimados.

Para lograr un manejo sostenible de las poblaciones silvestres de orégano, es fundamental tener estimaciones precisas sobre la cantidad de hoja seca que produce el taxón de interés. Al respecto, el presente estudio tuvo como objetivo desarrollar modelos alométricos sustentados en variables estructurales como la altura, el diámetro promedio de la copa y el peso seco del follaje, con el fin de predecir la biomasa foliar de *P. longiflora*. Esta herramienta busca apoyar a los técnicos forestales en la gestión de la especie, especialmente en regiones con condiciones ecológicas comparables.

Materiales y Métodos

Área de estudio

La investigación se realizó en poblaciones naturales de *P. longiflora* ubicadas en sitios con condiciones ecológicas similares, localizadas en el ejido Cuauhtémoc, municipio Saltillo, Coahuila, en las coordenadas 25°17'3.61" N y 100°56'57.99" O (Registro Agrario Nacional [RAN], 2023a), y en el ejido La Negrita, municipio Guadalcázar, San Luis Potosí; coordenadas 25°46'55.4" N y 100°34'58.6" O (RAN, 2023b) (Figura 1). Ambas localidades presentan suelos del tipo Litosol (I) y Xerosol háplico (Xh) (Instituto Nacional de Estadística, Geografía e Informática [INEGI], 2007a, 2007b). El clima se clasifica como semiárido, templado (BS1kw), con temperatura promedio de 26 °C que varían entre los 12 y 30 °C y una precipitación anual de 500 a 800 mm (INEGI, 2008). La vegetación dominante corresponde al matorral desértico micrófilo (Instituto Nacional de Estadística y Geografía [Inegi], 2018).

A = Sitio 1, Sitio 2, Sitio 3, Sitio 4 y Sitio 5; B = Sitio 6 y Sitio 7. W = O (oeste).

Figura 1. Localización del área de estudio de *Poliomintha longiflora* A. Gray en los estados de Coahuila y San Luis Potosí.

Datos de campo

Se aplicó un muestreo con enfoque dirigido, ejecutado en el periodo correspondiente al aprovechamiento de la especie, comprendido entre julio y octubre. Las ubicaciones de las poblaciones se registraron mediante georreferenciación para su posterior análisis espacial (Figura 1). En total se recolectaron datos de 271 ejemplares de orégano liso, de los cuales 160 provienen de dos sitios ubicados en Guadalcázar, San Luis Potosí, y 111 de cinco sitios localizados en Saltillo, Coahuila.

Variables independientes

Las variables dendrométricas independientes medidas a cada arbusto de orégano en campo fueron altura total (H, cm) desde el nivel del suelo hasta el extremo superior de la planta, el diámetro transversal mayor (DM, cm) y el diámetro transversal menor de la copa (Dm, cm) registrados con un flexometro $Truper^{(R)}$ modelo 12696. El promedio de los diámetros de copa (Dp, cm) se calculó a partir de los valores de DM y Dm.

Variables dependientes

La biomasa foliar (*Bf*, g) se estimó a partir de un método destructivo aplicado a los individuos seleccionados, que consistió en cortar hojas y tallos de cada arbusto; las muestras fueron almacenadas en sobres de papel estraza, etiquetados para su identificación. Posteriormente, se sometieron a secado en el invernadero del Campo

Experimental Saltillo CIRNE-INIFAP, a temperatura ambiente por un periodo de cinco días; para ello se siguió el protocolo empleado por el productor local. Después del secado, las hojas y ramas se separaron manualmente. El peso de las hojas secas se obtuvo con una balanza digital de alta precisión *ADAM*® modelo H-9885, con sensibilidad de 0.001 g. Este proceso permitió obtener la variable dependiente (*Bf*, g), la cual corresponde al material aprovechable.

La práctica de corte de tallos, si bien es destructiva, se justifica debido a que constituye el método estándar más preciso para la estimación directa de biomasa foliar en especies herbáceo-arbustivas (Corella-Bernal & Ortega-Nieblas, 2013; Granados-Sánchez et al., 2013). Además, refleja el sistema tradicional de aprovechamiento local, en el cual los productores extraen manualmente las hojas y tallos para su secado y posterior comercialización (Llamas-Torres et al., 2022). Por tanto, su inclusión responde tanto a criterios metodológicos como a la representatividad de las prácticas de manejo en campo (Benavides Solorio et al., 2021; Villavicencio-Gutiérrez et al., 2018). En el caso de *P. longiflora*, especie perenne y caducifolia (Díaz-de León et al., 2020), su capacidad de rebrote le permite recuperar e incluso superar su cobertura y productividad después de la poda, especialmente, posterior a eventos de lluvia (Aranda Ruiz et al., 2009).

Análisis estadísticos

Se ajustó un conjunto de modelos alométricos en el paquete estadístico de R versión 4.3.2 (R Core Team, 2023) para estimar la *Bf* del orégano liso (Cuadro 1), los cuales han sido evaluados en estudios similares para laurel (Villavicencio-Gutiérrez et al., 2020), orégano (Villavicencio-Gutiérrez et al., 2018), candelilla (Hernández-Ramos et al., 2019) y lechuguilla (Velasco Bautista et al., 2009). Las variables de diámetro promedio, altura total y biomasa foliar fueron analizadas empleando regresión con base en el enfoque de Mínimos cuadrados ordinarios (MCO).

Cuadro 1. Modelos alométricos utilizados para estimar la biomasa foliar de *Poliomintha longiflora* A. Gray en el ejido Cuauhtémoc (Saltillo, Coahuila) y el ejido La Negrita (Guadalcázar, San Luis Potosí).

Modelo	Nombre	Ecuación				
1	Alométrico	$Bf = \beta_0 (DpH)^{\beta_1}$				
2	Coeficiente mórfico constante	$Bf = \beta_1(Dp^2H)$				
3	Modelo australiano	$Bf = \beta_0 + \beta_1 Dp^2 + \beta_2 H + \beta_3 Dp^2 H$				
4	Variable combinada Spurr	$Bf = \beta_0 + \beta_1 (Dp^2 H)$				
5	Salas	$Bf = \beta_0 + \beta_1(DpH)$				
6	Schumacher-Hall	$Bf = \beta_0 (Dp)^{\beta_1} (H)^{\beta_2}$				
7	Potencia	$Bf = \beta_0 (Dp)^{\beta_1}$				
8	Takata	$Bf = \frac{(Dp^2H)}{(\beta_0 + \beta_1 Dp)}$				

Bf = Biomasa foliar (g); Dp = Diámetro promedio de la copa (cm); H = Altura total (cm); $\beta 0...$, βn = Coeficientes de regresión. Fuente: Segura y Andrade (2008).

Se decidió ajustar los modelos alométricos de forma conjunta para ambas localidades de muestreo, debido a que las condiciones ecológicas de los ejidos Cuauhtémoc y La Negrita son similares en cuanto a tipo de suelo, clima y vegetación dominante, lo que reduce la variabilidad ambiental entre localidades. Además, el análisis preliminar no mostró diferencias estadísticamente significativas en las variables dendrométricas clave entre sitios, lo que respalda la integración de los datos en un solo conjunto para mejorar la capacidad explicativa y la estabilidad del modelo (Segura & Andrade, 2008). Esta estrategia metodológica es congruente con enfoques adoptados en estudios previos que han modelado especies con amplia distribución ecológica y alta plasticidad fenotípica (Benavides Solorio et al., 2021; Hernández-Ramos et al., 2019; Villavicencio-Gutiérrez et al., 2018).

Criterios de selección de la ecuación alométrica

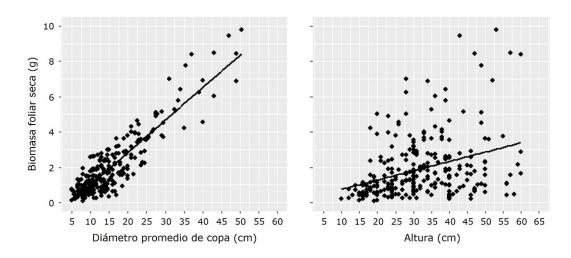
La elección de la ecuación alométrica se hizo con base en los siguientes estadísticos de ajuste de regresión: se priorizó el Coeficiente de determinación ajustado más alto (R^2ajd) , junto con un menor Error estándar (Sxy), bajo Suma de cuadrados de residuales (SSE) y valor reducido en el Coeficiente de variación (CV%), además de la significancia de sus parámetros $(p \le 0.05)$. La verificación de los supuestos de regresión se realizó mediante pruebas específicas de validación del modelo; para evaluar la autocorrelación en los residuos, se utilizó la prueba de Durbin-Watson (D-W) (Durbin & Watson, 1950); para comprobar la normalidad de los errores se aplicó la prueba de Kolmogorov-Smirnov (K-S) (Massey, 1951); y, finalmente, la heterocedasticidad se evaluó con la prueba de White (White, 1980). Todos los análisis se hicieron en el paquete estadístico R versión 4.3.2 (R Core Team, 2023).

Resultados y Discusión

El estudio incluyó todo el intervalo observado de alturas y tamaños de copa en los arbustos de *P. longiflora* dentro del área de análisis (Cuadro 2). En el área de estudio, las plantas de *P. longiflora* presentaron una *H* máxima de 60 cm, mientras que el *DM* alcanzó los 74 cm, con un *Dp* de 14.806 cm y la *Bf* promedio por individuo de 1.907 g, con una variación de entre 0.086 y 9.777 g. Estos valores coinciden con lo citado por Díaz-de León et al. (2020), quienes señalan que la especie puede alcanzar hasta 100 cm, tanto en *H* como en *DM* de copa.

Cuadro 2. Estadísticas descriptivas de *Poliomintha longiflora* A. Gray en el ejido Cuauhtémoc del municipio Saltillo, Coahuila y el ejido La Negrita del municipio Guadalcázar, San Luis Potosí.

Variables y componentes	Media	D. S.	cv	Máximo	Mínimo
-------------------------	-------	-------	----	--------	--------


H (cm)	31.974	11.124	2.874	60.000	10.000
DM (cm)	17.303	9.552	1.811	74.000	4.000
Dm (cm)	10.074	6.386	1.577	48.000	2.000
Dp (cm)	14.806	8.701	1.702	50.500	3.000
<i>Bf</i> (g)	1.907	1.739	1.097	9.777	0.086

H = Altura total; DM = Diámetro mayor; Dm = Diámetro menor; Dp = Diámetro promedio de copa; Bf = Biomasa foliar; D. S. = Desviación estándar (g); CV = Coeficiente de variación (%).

Actualmente, se carece de información específica sobre las dimensiones óptimas de cosecha para *P. longiflora*. No obstante, estudios realizados en especies de la misma familia (Lamiaceae) han evidenciado que podas realizadas a una *H* de 10 a 15 cm promueven un rebrote vigoroso, incrementan el rendimiento de biomasa aérea y mejoran la concentración de metabolitos secundarios, como aceites esenciales (Kimera et al., 2021; Soltanbeigi et al., 2021). De manera similar, Carlen et al. (2009) registraron que en hierbas perennes como *Salvia officinalis* L., los cortes por debajo de los 10 cm afectaron negativamente la capacidad de recuperación y redujeron el rendimiento en cosechas sucesivas. En contraste, mantener una altura remanente de 10 a 15 cm favorece la regeneración estructural y funcional de la planta, lo cual asegura una mayor acumulación de biomasa útil en los ciclos posteriores de aprovechamiento.

Poliomintha longiflora presenta floración, incluso en estadios vegetativos tempranos y con alturas reducidas (Aranda Ruiz et al., 2009; Díaz-de León et al., 2020); sin embargo, la máxima producción de *Bf* se observa tras los eventos de precipitación, comportamiento similar al observado en *Origanum syriacum* L. (Al-Tawaha et al., 2016). Al tratarse de un arbusto perenne, su recolección a baja *H* no compromete su regeneración; por el contrario, estimula el desarrollo de tejido leñoso basal y el engrosamiento de los tallos, lo cual incrementa su robustez estructural y capacidad de rebrote en cada ciclo de poda. Este patrón de respuesta adaptativa ha sido descrito también en otras lamiáceas manejadas bajo esquemas de aprovechamiento sostenido (Kimera et al., 2021; Soltanbeigi et al., 2021).

La relación entre la *Bf* y las variables *H* y *Dp*, mostró un comportamiento lineal, ambas variables han sido ampliamente reconocidas como indicadores confiables para la estimación de biomasa en especies arbustivas, como lo documentan estudios previos en orégano y laurel (Villavicencio-Gutiérrez et al., 2018, 2020). Es importante señalar que, al aumentar estas variables predictoras, también se incrementa la dispersión observada en los datos de *Bf* (Figura 2).

Figura 2. Distribución de biomasa foliar con relación al diámetro promedio de copa y la altura de *Poliomintha longiflora* A. Gray en el ejido Cuauhtémoc del municipio Saltillo, Coahuila y el ejido La Negrita del municipio Guadalcázar, San Luis Potosí.

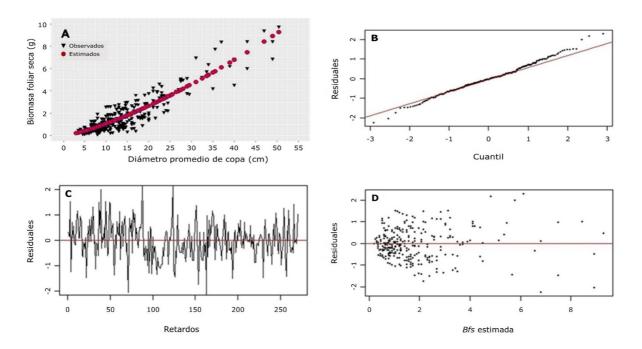
Los análisis estadísticos realizados para los diferentes modelos alométricos revelaron una alta capacidad explicativa; siete de los ocho modelos evaluados registraron una R^2 ajd superior a 70 %. Este nivel de ajuste es consistente con lo documentado en modelos para especies arbustivas, en las que se han empleado tamaños muestrales que varían entre 4 y 784 individuos, cuyo intervalo de valores para R^2 ajd es de 0.65 a 0.95 (Rojas-García et al., 2015). Los resultados confirman que el Dp y la H de la planta son predictores robustos de la Bf de orégano (Villavicencio-Gutiérrez et al., 2018, 2020). No obstante, se observó una variación considerable en la precisión de los modelos, con errores estándar entre 0.696 y 1.212 g y un Coeficiente de variación máximo de 70.03 %.

En este estudio, los modelos Australiano (3) y Salas (5) presentaron valores de coeficientes no significativos para determinar la Bf, por lo que fueron descartados. En cuanto al modelo de Schumacher-Hall (6), aunque inicialmente mostró un ajuste aceptable ($R^2ajd=0.82$), no superó las pruebas de validación debido a problemas de heterocedasticidad ($X^2=34.24$, p=0.0001) en sus residuos. Respecto al modelo no lineal de potencia (7) demostró ser superior en la estimación de la Bf de P. longiflora, ya que explicó 83.3 % de la variabilidad total, con un Sxy de 0.710 g y un CV de 37.26 % (Cuadro 3). El modelo (7) ha sido empleado en estudios previos para cuantificar biomasa aérea y contenido de carbono en especies como cedro y encino (Benavides Solorio et al., 2021; Gómez-Díaz et al., 2011), predecir biomasa forrajera y producción de leña en Acacia sp. (López-Merlín et al., 2003), e incluso para estimar el peso seco de rebrotes en palmitos ($Euterpe\ edulis\ Mart.$) dentro de sistemas de producción sostenibles ($Ares\ et\ al.,\ 2002$).

Cuadro 3. Estadísticas de regresión para estimar la biomasa foliar de *Poliomintha longiflora* A. Gray en los sitios de estudio.

Modelo	Coeficiente	Estimado	<i>Pr</i> > <i>t</i>	R²ajd	Sxy	SSE	CV	K-S	D-W	White	Orden
1	B_0	0.004308	<0.0001	0.733	0.898	216.995	47.09	0.0771	1.772	21.44	7
	B_1	0.977942	< 0.0001					0.0793*	0.0301*	0.0108*	
2	B_1	0.000194	< 0.0001	0.514	1.212	396.586	70.03	0.1182	1.754	188.93	8
								0.0010*	0.021*	<0.0001*	
3	B_0	0.4307	0.0132	0.806	0.765	156.333	40.12	0.0809	1.561	64.68	3
	B_1	0.003615	< 0.0001								
	B_2	0.01157	0.0255					0.0576*	<0.0001*	<0.0001*	
	B_3	0.00000387	0.7075								
4	B_0	0.9979	< 0.0001	0.755	0.859	198.555	45.04	0.1176	1.538	34.24	4
	B_1	0.00008471	< 0.0001					0.0011*	<0.0001*	<0.0001*	
5	B_0	0.097111	0.259	0.734	0.896	216.285	47.01	0.0781	1.762	21.1	6
	B_1	0.00358	< 0.0001					0.0731*	0.025*	0.0121*	
6	B_0	0.026488	< 0.0001	0.829	0.696	129.998	36.45	0.0543	1.736	37.32	2
	B_1	1.300898	< 0.0001					0.4000*	0.0147*	<0.0001*	
	B_2	0.202887	< 0.0001								
7	B_0	0.047028	< 0.0001	0.833	0.710	135.816	37.26	0.0559	1.736	13.41	1
	B_1	1.347942	< 0.0001					0.3640*	0.0547*	0.1564*	
8	B_0	991.5	< 0.0001	0.745	0.0877	207.018	46.00	0.06823	1.8000	19.34	5
	B_1	228.7	< 0.0001					0.1603*	0.0497*	0.0224*	

^{* =} Pr>|t| = Significancia estadística al 95 %; R²ajd = Coeficiente de determinación ajustado; Sxy = Error estándar; SSE = Suma de los cuadrados de los residuales; CV = Coeficiente de variación (%); K-S = Prueba de normalidad de Kolmogorov-Smirnov; D-W = Estadística de autocorrelación de Durbin-Watson; White = Prueba de heterocedasticidad de White; Orden = Orden de selección de los modelos.


Para evaluar la adecuación del modelo de potencia (7), se realizaron pruebas de diagnóstico. La prueba de *Durbin-Watson* (D-W=1.736, p>0.05) no indicó presencia de autocorrelación serial en los residuos (Durbin & Watson, 1950). Además, la prueba de *Kolmogorov-Smirnov* (D=0.0559, p=0.3640) no rechazó la hipótesis nula de normalidad de los residuos, lo que respalda la aplicación de inferencia estadística paramétrica (Massey, 1951). Por último, la prueba de *White* (X²=13.41, p=0.1564) no evidenció heterocedasticidad, sugiriendo que la varianza de los errores es constante a lo largo de los valores predichos (White, 1980).

Para estimar la biomasa en los bosques, Rodríguez-Laguna et al. (2007) utilizaron el modelo de potencia, y obtuvieron una R^2ajd superior a 0.97 para estimar la biomasa de los componentes de encinos. De manera similar, Acosta-Mireles et al. (2002) emplearon el mismo modelo en seis especies del bosque mesófilo en Oaxaca, y estimaron una R^2ajd superior a 0.97. Para estimar la biomasa en los componentes de encinos, Rodríguez-Laguna et al. (2007) utilizaron el modelo de potencia en su forma lineal, e igualmente registraron una R^2ajd superior a 0.97.

Villavicencio-Gutiérrez et al. (2018) evaluaron 10 modelos alométricos en orégano ($Lippia\ graveolens\ Kunth$) y señalaron que el modelo de potencia proporcionó un ajuste sólido (R^2ajd =0.80). Lo anterior posiciona a ese modelo como una de las mejores opciones para estimar la biomasa en este tipo de especies. En laurel ($Litsea\ parvifolia\ (Hemsl.)\ Mez$) con el modelo de potencia se obtuvo una $R^2ajd\ de\ 0.82\ (Villavicencio-Gutiérrez et al., 2020); mientas que en plantaciones de teca (<math>Tectona\ grandis\ L.\ f.$), el modelo de potencia se utilizó para estimar la biomasa por componentes del árbol alcanzando un $R^2ajd\ de\ 0.92\ para\ las\ hojas\ (Marroquín-Morales et al., 2023).$

Los hallazgos derivados del modelo de regresión indicaron una correlación significativa entre el valor medio Dp y la Bf en los individuos de orégano, lo cual sugiere que el Dp puede emplearse con precisión para estimaciones de Bf (Benavides Solorio et al., 2021; Gómez-Díaz et al., 2011; Marroquín-Morales et al., 2023). Los técnicos forestales o prestadores de servicios especializados podrían utilizar esta relación como una herramienta para realizar estimaciones precisas. Las gráficas de validación apoyan la

solidez del modelo, ya que evidencian una adecuada dispersión de los puntos, una distribución normal de los errores y ausencia de autocorrelación (Figura 3).

A = Valores observados y estimados; B = Q-Plot; C = Autocorrelación; D = Homocedasticidad.

Figura 3. Resultados de las pruebas de validación de los supuestos del modelo de potencia para *Poliomintha longiflora* A. Gray en los sitios de estudio.

El modelo de potencia (7) para estimar la biomasa foliar de *P. longiflora* quedó estructurado de la siguiente manera:

$$Bfs = 0.047028(Dp)^{1.347942}$$

Donde:

Bfs = Biomasa foliar

Dp = Diámetro promedio de copa

Conclusiones

El modelo alométrico de potencia desarrollado permite estimar la biomasa foliar de P. longiflora y constituye un aporte significativo al manejo técnico y sustentable de los productos forestales no maderables en ecosistemas áridos y semiáridos. El modelo tiene el diámetro promedio de copa como variable dendrométrica principal y presenta una alta capacidad predictiva (R^2 ajd=0.833); asimismo, cumple rigurosamente con los supuestos estadísticos de normalidad, homocedasticidad e independencia de errores, lo que garantiza su confiabilidad y aplicabilidad en condiciones de campo. Su implementación contribuirá a optimizar los inventarios forestales, reducir los costos operativos y evitar métodos destructivos, lo que promoverá el aprovechamiento racional de las poblaciones naturales de orégano liso. Este tipo de modelo representa una herramienta clave para apoyar las actividades silvícolas y de evaluación del recurso, facilitando una toma de decisiones más precisa en torno al uso sustentable de especies aromáticas nativas con valor comercial.

Agradecimientos

Al fondo Sectorial Conafor-Conacyt por el respaldo brindado al proyecto identificado con el número SIGI: 13271734312, titulado: "Desarrollo e implementación de dos sistemas de procesamiento para: a) extracción de aceites esenciales y b) obtención de fibra de ixtle: generación de productos de alta calidad". También extendemos nuestro agradecimiento al equipo del Campo Experimental Saltillo CIRNE-INIFAP por su colaboración en las actividades de campo y en el desarrollo de esta investigación.

Conflicto de intereses

Los autores declaran no tener conflicto de intereses.

Contribución por autor

Luis Miguel Toribio-Ferrer: diseño metodológico, modelación y análisis estadístico, elaboración del escrito e investigación bibliográfica; Eulalia Edith Villavicencio-Gutiérrez: diseño y supervisión de la investigación, ejecución en campo, interpretación de resultados, revisión y corrección del documento; Antonio Cano-Pineda: análisis de resultados, revisión y corrección del documento.

Referencias

Acosta-Mireles, M., Vargas-Hernández, J., Velásquez-Martínez, A., y Etchevers-Barra, J. D. (2002). Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. *Agrociencia*, *36*, 725-736. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/225

Al-Tawaha, A., Al-Karaki, G., & Massadeh, A. (2016). Effects of planting density and cutting height on herbage and water use efficiency of thyme (*Origanum syriacum* L.) grown under protected soilless and open field conditions. *Research on Crops*, *17*(1), 118-128. https://gauravpublications.s3.amazonaws.com/Articles/resOnCrop/vol_17-no_1/v17-s1-118-128.pdf

Aranda Ruiz, J., Silva Vázquez, R., y Franco Hernández, D. I. (2009, enero-marzo). Caracterización del aceite esencial de orégano liso (*Poliomintha longiflora* A. Gray) de la localidad Infiernillo en el municipio de Higueras, N.L., México. *RESPYN Revista Salud Pública* y *Nutrición*, 10(1).

https://respyn.uanl.mx/index.php/respyn/article/view/229/211

Ares, A., Boniche, J., Quesada, J. P., Yost, R., Molina, E., y Smyth, T. J. (2002). Estimación de biomasa por métodos alométricos, nutrimentos y carbono en plantaciones de palmito en Costa Rica. *Agronomía Costarricense*, *26*(2), 19-30. https://doi.org/10.15517/rac.v26i2.61783

Benavides Solorio, J. de D., Torres García, O., Flores Garnica, J. G., Acosta Mireles, M., y Rueda Sánchez, A. (2021). Ecuaciones alométricas para estimar biomasa y

carbono aéreos de Cedrela odorata L. en plantaciones forestales. Revista Mexicana de Ciencias Forestales, 12(65), 89-111. https://doi.org/10.29298/rmcf.v12i65.791 Carlen, C., Carron, C. A., Previdoli, S., & Baroffio, C. (2009). Salvia officinalis: influence of cutting frequency, cutting height and date of the last harvest before winter. Horticulturae, 826, 25-30. Acta https://doi.org/10.17660/ActaHortic.2009.826.2 Corella-Bernal, R. A., y Ortega-Nieblas, M. M. (2013). Importancia del aceite esencial y la producción de orégano Lippia palmeri Watson en el estado de Sonora. Biotecnia, 15(1), 57-64. https://biotecnia.unison.mx/index.php/biotecnia/article/view/137 Díaz-de León, C. I., González-Álvarez, M., Guzmán-Lucio, M. A., Núñez-Guzmán, G. R., y Moreno-Limón, S. (2020). El orégano de los géneros *Lippia* (Verbenaceae) y Poliomintha (Lamiaceae) en el Estado de Nuevo León, México. Polibotánica, 50(25), 1-18. https://polibotanica.mx/index.php/polibotanica/article/view/581 Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squares regression. I. *Biometrika*, 37(3/4), 409-428. https://doi.org/10.2307/2332391 Gómez-Díaz, J. D., Etchevers-Barra, J. D., Monterrosos-Rivas, A. I., Campo-Alvez, J., y Tinoco-Rueda, J. A. (2011). Ecuaciones alométricas para estimar biomasa y carbono en Quercus magnoliaefolia. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2), 261-272. https://doi.org/10.5154/r.rchscfa.2010.11.117 Granados-Sánchez, D., Martínez-Salvador, M., López-Ríos, G. F., Borja-de la Rosa, A., y Rodríguez-Yam, G. A. (2013). Ecología, aprovechamiento y comercialización del orégano (Lippia graveolens H. B. K.) en Mapimí, Durango. Revista Chapingo Serie Ambiente, Ciencias Forestales 19(2), 305-321. del https://doi.org/10.5154/r.rchscfa.2012.05.035 Hernández-Ramos, A., Cano-Pineda, A., Flores-López, C., Hernández-Ramos, J., García-Cuevas, X., Martínez-Salvador, M., y Martínez Ángel, L. (2019, verano).

García-Cuevas, X., Martínez-Salvador, M., y Martínez Ángel, L. (2019, verano). Modelos para estimar biomasa de *Euphorbia antisyphilitica* Zucc. en seis municipios de Coahuila. *Madera y Bosques*, *25*(2), Artículo e2521806. https://doi.org/10.21829/myb.2019.2521806

Instituto Nacional de Estadística, Geografía e Informática. (2007a). Conjunto de datos Vectorial Edafológico. Escala 1:250 000 Serie II Continuo Nacional (G14-7)edafológica]. Monterrev [Carta INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825236182 Instituto Nacional de Estadística, Geografía e Informática. (2007b). Conjunto de datos Vectorial Edafológico. Escala 1:250 000 Serie II Continuo Nacional San Luis Potosí edafológica]. (F14-4) [Carta INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235673 Instituto Nacional de Estadística, Geografía e Informática. (2008). Conjunto de datos vectoriales escala 1:1 000 000. Unidades climáticas [Carta climatológica]. INEGI. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267568 Instituto Nacional de Estadística y Geografía. (2018). Conjunto de datos vectoriales de uso del suelo y vegetación. Escala 1:250 000. Serie VII. Conjunto Nacional [Carta de uso de suelo vegetación]. Inegi. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463842781 Kimera, F., Sewilam, H., Fouad, W. M., & Suloma, A. (2021). Sustainable production of Origanum syriacum L. using fish effluents improved plant growth, yield, and essential oil composition. Heliyon, *7*(3), Article e06423. https://doi.org/10.1016/j.heliyon.2021.e06423

Koksal, O., Gunes, E., Orkan Ozer, O., & Ozden, M. (2010). Analysis of effective factor on information sources at Turkish oregano farms. *African Journal of Agricultural Research*, *5*(2), 142-149. https://academicjournals.org/journal/AJAR/article-abstract/EECAE9630024

Llamas-Torres, I., Grijalva-Arango, R., Porter-Bolland, L., y Calvo-Irabien, L. M. (2022). Impacto del manejo *in situ-ex situ* del orégano mexicano (*Lippia origanoides* Kunth) en el noroeste de Yucatán. *Botanical Sciences*, 100(3), 610-630. https://doi.org/10.17129/botsci.2994

López-Merlín, D., Soto-Pinto, L., Jiménez-Ferrer, G., y Hernández-Daumás, S. (2003). Relaciones alométricas para la predicción de biomasa forrajera y leña de *Acacia*

pennatula y Guazuma ulmifolia en dos comunidades del norte de Chiapas, México. Interciencia, 28(6), 334-339. https://www.redalyc.org/articulo.oa?id=33908105 Marroquín-Morales, P., Jiménez-Pérez, J., Yerena-Yamallel, J. I., y Reyes-Reyes, J. (2023). Modelos alométricos para estimar biomasa aérea en una plantación de Tectona grandis L. F. en Yucatán. Ecosistemas y Recursos Agropecuarios, 10(2), Artículo e3566. https://doi.org/10.19136/era.a10n2.3566

Massey Jr., F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. *Journal of the American Statistical Association*, 46(253), 68-78. https://doi.org/10.1080/01621459.1951.10500769

Paredes-Aguilar, M. de la C., Gastélum-Franco, M. G., Silva-Vázquez, R., y Nevárez-Moorillón, G. V. (2007). Efecto antimicrobiano del orégano mexicano (*Lippia berlandieri* Schauer) y de su aceite esencial sobre cinco especies del género *Vibrio*. *Revista Fitotecnia Mexicana*, 30(3), 261-267. https://doi.org/10.35196/rfm.2007.3.261

R Core Team. (2023). *Index of/bin/windows/base/old/4.3.2*. [Software]. R Foundation for Statistical Computing. https://cran.r-project.org/bin/windows/base/old/4.3.2/
Registro Agrario Nacional. (2023a). *Perimetrales núcleos agrarios. Entidad Federativa*Coahuila

[SHAPE].

https://datos.ran.gob.mx/filescd/dgcat/ran_da_dgcat_poligonos_nucleos_agrarios_shp_coah.zip

Registro Agrario Nacional. (2023b). *Perimetrales núcleos agrarios. Entidad Federativa San Luis Potosí* [SHAPE]. https://datos.ran.gob.mx/filescd/dgcat/ran_da_dgcat_poligonos_nucleos_agrarios shp slp.zip

Rivero-Cruz, I., Duarte, G., Navarrete, A., Bye, R., Linares, E., & Mata, R. (2011). Chemical composition and antimicrobial and spasmolytic properties of *Poliomintha longiflora* and *Lippia graveolens* essential oils. *Journal of Food Science*, *76*(2), C309-C317. https://doi.org/10.1111/j.1750-3841.2010.02022.x

Rodríguez-Laguna, R., Jiménez-Pérez, J., Aguirre-Calderón, O., y Jurado-Ibarra, E. (2007). Ecuaciones alométricas para estimar biomasa aérea en especies de encino y pino en Iturbide, N. L. Revista Ciencia Forestal en México, 32(101), 39-56. https://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/827/2064 Rojas-García, F., De Jong, B. H. J., Martínez-Zurimendi, P., y Paz-Pellat, F. (2015). Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72, 835-864. https://doi.org/10.1007/s13595-015-0456-y Segura, M., y Andrade, H. J. (2008). ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes? Agroforestería en las Américas, (46), 89-96. https://repositorio.catie.ac.cr/handle/11554/6935 Soltanbeigi, A., Yıldız, M., Dıraman, H., Terzi, H., Sakartepe, E., & Yıldız, E. (2021). Growth responses and essential oil profile of Salvia officinalis L. Influenced by water deficit and various nutrient sources in the greenhouse. Saudi Journal of Biological Sciences, 28(12), 7327-7335. https://doi.org/10.1016/j.sjbs.2021.08.034 Tapia-Tapia, E. del C., y Reyes-Chilpa, R. (2008). Productos forestales no maderables en México: Aspectos económicos para el desarrollo sustentable. Madera y Bosques, 14(3), 95-112. https://doi.org/10.21829/myb.2008.1431208 Velasco Bautista, E., Arredondo Gómez, A., Zamora-Martínez, M. C., y Moreno Sánchez,

Velasco Bautista, E., Arredondo Gómez, A., Zamora-Martínez, M. C., y Moreno Sánchez, F. (2009). *Modelos predictivos para la producción de productos forestales no maderables Lechuguilla* [Libro blanco]. Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. https://www.conafor.gob.mx/biblioteca/Manuales-Tecnicos/Manual%20Lechuguilla%20web.pdf

Villavicencio-Gutiérrez, E. E., Cano-Pineda, A., Castillo-Quiroz, D., Hernández-Ramos, A., y Martínez-Burciaga, O. U. (2021). Manejo forestal sustentable de los recursos no maderables en el semidesierto del norte de México. *Revista Mexicana de Ciencias Forestales*, 12(Especial-1), 31-63. https://doi.org/10.29298/rmcf.v12iEspecial-1.1083 Villavicencio-Gutiérrez, E. E., Hernández-Ramos, A., Aguilar-González, C. N., y García-Cuevas, X. (2018). Estimación de la biomasa foliar seca de *Lippia graveolens*

Kunth del sureste de Coahuila. *Revista Mexicana de Ciencias Forestales*, *9*(45), 187-207. https://doi.org/10.29298/rmcf.v9i45.139

Villavicencio-Gutiérrez, E. E., Mendoza-Morales, S., y Méndez González, J. (2020). Modelo para predecir biomasa foliar seca de *Litsea parvifolia* (Hemsl.) Mez. *Revista Mexicana de Ciencias Forestales*, 11(58), 112-133. https://doi.org/10.29298/rmcf.v11i58.642

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. *Econometrica*, 48(4), 817-838. https://doi.org/10.2307/1912934

Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. *Journal of Agricultural and Food Chemistry*, *49*(11), 5165-5170. https://doi.org/10.1021/jf010697n

© (3) (8)

Todos los textos publicados por la **Revista Mexicana de Ciencias Forestales** –sin excepción–se distribuyen amparados bajo la licencia *Creative Commons 4.0* <u>Atribución-No Comercial (CC BY-NC 4.0 Internacional)</u>, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.