

DOI: https://doi.org/10.29298/rmcf.v8i48.188

Artículo

Frutos y semillas de *Bursera simplex* Rzed. & Calderón en diferentes sitios y estructura arbórea

Bursera simplex Rzed. & Calderón fruits and seeds in different sites and tree structure

Jesús Jonathan Luna Cedeño¹, Gerardo Rodríguez Ortiz^{1*}, José Raymundo, Enríquez del Valle¹, Judith Ruíz Luna¹, Juan Ángel García Aguilar¹ y Gisela Virginia Campos Ángeles¹

Abstract

The territory of *Oaxaca* State has the greatest biodiversity in Mexico; the most abundant vegetation is the low deciduous forest with *Bursera* species of economic and biological importance. In the present study, the structural composition and phenotype of *Bursera simplex* seed trees and the characteristics of the site in which they grow were evaluated; their production of fruits and seeds were described according to the tree from which they were harvested. During 2015, a sampling of 23 sample units was conducted towards the best phenotypes with high production of fruits and seeds and their inventory was made. The data were analyzed through structural indexes and analysis of variance to compare the production of fruits and seeds, in relation to the tree from which they were taken, as well as the characteristics of the site, altitude, slope and position of the place where the specimens grew. Those of greater size are associated with slopes \leq 25 % and altitudes \leq 1 278 m, where they produce 29 259 seeds kg⁻¹. The population structure is of irregular type, with important densities of *Bursera simplex* associated with the western exposure; the forest value index, the importance value index and the complexity index affect the morphological characteristics of fruits and seeds.

Key words: Altitude, *Bursera simplex* Rzed. & Calderón, orientation, *Oaxaca*, slope, structural indexes.

Resumen:

El territorio del estado de Oaxaca reúne la mayor biodiversidad de México; la vegetación más abundante es la selva baja caducifolia con especies de *Bursera* de importancia económica y biológica. En el presente estudio se evaluó la composición estructural y el fenotipo de árboles semilleros de *Bursera simplex* y las características del sitio en que crecen; su producción de frutos y de semillas se describió en función del individuo del cual se recolectaron. Durante 2015, se realizó un muestreo dirigido de 23 unidades muestrales hacia los mejores fenotipos con alta producción de frutos y semillas, ademas se hizo su inventario. Los datos se analizaron mediante índices estructurales y análisis de varianza para comparar la producción de frutos y semillas, en relación al árbol del que se obtuvieron, así como las características del sitio, altitud, pendiente y posición del lugar en el que crecieron los ejemplares. Los de tamaño mayor se asocian a pendientes ≤ 25 % y altitudes ≤ 1 278 m, donde producen 29 259 semillas kg⁻¹. La estructura poblacional es de tipo irregular, con importantes densidades de *Bursera simplex* asociadas a la exposición oeste; el índice de valor forestal, el índice de valor de importancia y el índice de complejidad afectan las características morfológicas de frutos y semillas.

Palabras clave: Altitud, Bursera simplex Rzed. & Calderón, exposición, índices estructurales, Oaxaca, pendiente.

Fecha de recepción/Reception date: 2 de enero de 2018 Fecha de aceptación/Acceptance date: 30 de mayo de 2018.

¹Instituto Tecnológico del Valle de Oaxaca, México

^{*}Autor por correspondencia; correo-e:grodriguez.itvo@yahoo.com

Introducción

En México existe la mayoría de los tipos de vegetación registrados a nivel mundial, además de una amplia gama de climas, mismos que condicionan los procesos de formación del suelo, así como la diversidad e interacción entre las especies (Villaseñor, 2003; Hernández *et al.*, 2011; Dzib-Castillo *et al.*, 2014).

El estado de Oaxaca reúne la mayor biodiversidad, y en gran parte de su territorio predomina el tipo de vegetación de selva baja caducifolia (SBC) (López et al., 2005); estos ecosistemas están siendo modificados, principalmente, por actividades antrópicas que afectan a las poblaciones de *Bursera* spp., las cuales son importantes en el ámbito biológico y económico, al ser utilizadas como materia prima para la obtención de resinas aromáticas, aceites esenciales y para la elaboración de artesanías.

Los recursos naturales: suelo, agua, flora y fauna no son aprovechados de manera sustentable en muchas partes del país. En el caso particular de la selva baja espinosa y de especies de *Bursera*, en particular, sus poblaciones están disminuyendo, pues la regeneración natural mediante semillas no contrarresta los niveles de aprovechamiento. Se ha documentado que los árboles de *Bursera simplex* Rzed. & Calderón tienen porcentajes elevados de semillas vanas, condición generada por posibles cruzamientos con *B. biflora* Rzed. & Calderón; a esto hay que agregar la reducción notable del número de árboles en etapa reproductiva, lo que induce a la endogamia, que repercute negativamente en las plantas al reducir su viabilidad (Cuevas y Abarca, 2006; Rzedowski y Calderón, 2006; Nora *et al.*, 2011).

Bursera simplex es endémica de Oaxaca, se distribuye únicamente en la porción media de la cuenca del río Tehuantepec (Rzedowski y Calderón, 2006); donde es un componente importante del bosque tropical caducifolio y se le utiliza, cotidianamente, para extraer resina aromática con fines ceremoniales. Tiene potencial para otros usos, a partir de los hallazgos de Gigliarelli *et al.* (2015) quienes identificaron su contenido de ácido morólico y 3-epi-lupeol, esqueletos de lupano y olaneano r, que de acuerdo con Cano (2013) son componentes utilizados

como antitumorales, antiinflamatorios, antiVIH, antimicrobianos, hepa y cardioprotectores, analgésicos, antimicóticos, antiquimiopreventivos, entre otros.

La diversidad estructural de las comunidades vegetales es uno de sus aspectos más relevantes, al estar relacionada con el hábitat de diversos animales y plantas; de igual manera lo está con la estabilidad frente a distintos factores bióticos y abióticos, así como con los beneficios directos (productos) e indirectos (fijación de carbono, paisaje, protección del suelo, entre otras) (Del Río et al., 2003). Por ello, es importante conocer la estructura del ecosistema, que está influenciada, principalmente, por el tipo, número, ordenamiento espacial y temporal de los elementos que lo constituyen (Corral et al., 2005; Ledo et al., 2012), los cuales se pueden medir mediante índices estructurales y variables morfológicas (diámetro, altura, área basal, densidad). La relación de tamaños entre los árboles es importante, debido a que las especies mostrarán diferencias morfológicas que dan lugar a contrastes estructurales (Castellanos et al., 2008; Jiménez et al., 2009).

La variabilidad morfológica de los árboles resulta de diferencias intraespecíficas, pero también al efecto de factores biológicos y físicos, mismos que tienen una estrecha correlación con la reproducción debido a que cualquier factor ambiental que influya en el crecimiento lo hará, de igual manera, con el desempeño reproductivo (Enríquez et al., 2004).

Además, las semillas en una especie pueden variar en tamaño entre individuos y poblaciones, por diferencias genéticas o por diferencias en la historia de vida de cada planta. Desde este punto de vista, Alba y Márquez (2006) mencionan que el potencial de producción de semillas de un taxon forestal está influenciado por las condiciones ambientales de un sitio determinado, así como por sus características fenotípicas, las cuales permiten evaluar y ponderar el potencial para su manejo; o bien, seleccionar individuos sobresalientes dentro de una población determinada (Balcorta y Vargas, 2004; Cerón y Sahagún, 2005); cuando se pretende propagar una especie arbórea con fines de reforestación, es importante manejar criterios rigurosos de la selección de los árboles en los que se colectarán semillas, ya que de

ello depende que en la siguiente generación de individuos se logre ganancia genética (Vallejos *et al.*, 2010). Por lo anterior, el objetivo del presente estudio consistió en evaluar el efecto de la estructura arbórea y variables de sitio sobre el peso y características morfológicas de los frutos y semillas de *Bursera simplex*.

Materiales y Métodos

Área de estudio

El estudio se llevó a cabo durante 2016 en Santa María Zoquitlán, municipio del mismo nombre, una comunidad de los Valles Centrales de Oaxaca, ubicada a 16°34′ N y 96°21′ O, a una altitud media de 1 080 m. La vegetación predominante donde se distribuye *B. simplex* es la selva baja caducifolia, especie endémica de la cuenca del Río Tehuantepec; los géneros que comparten el hábitat son *Cephalocereus, Cercidium, Lysiloma, Ceiba, Neobuxbaumi, Escontria, Acacia, Beaucarnea,* entre otras. El clima predominante es el BSo(h')w" (w) i g (Acosta *et al.*, 2003).

Método de muestreo y registro de datos

Se realizaron muestreos dirigidos con la finalidad de identificar árboles de la especie de interés con características fenotípicas sobresalientes, de apariencia sana y que además presentaran frutos, este último fue el principal criterio para su selección. Durante octubre-diciembre de 2015 se lograron reconocer 27 árboles en el paraje denominado El Paredón, ubicados en un intervalo altitudinal de 1 078-1 406 m; los individuos se identificaron con números progresivos y fueron tomados como punto central de referencia para establecer 23 unidades muestrales (UM) de 100 m².

En cada sitio de muestreo, se contabilizaron todas los taxa presentes y con el apoyo de una cinta métrica *Fiber-glass* de 1.52 m y una cinta métrica de 5 m (marca Cadena modelo MGA5020) se midieron y registraron las variables morfológicas: diámetro al pie (DP, cm), altura total (AT, m) y diámetro de copa (DC, m) con el que se calculó el área de copa (AC= $1/4 \times \pi DC^2$, m^2).

En las unidades muestrales establecidas con un GPS *Garmin Drive*TM, se otuvieron las variables del sitio:exposición, altitud (m) y pendiente (%) con un clinómetro *Suunto Finland* Pm5/360pc.

De cada uno de los ejemplares de *Bursera* seleccionados se recolectó parte de los frutos que presentaban, los cuales se introdujeron en bolsas de papel y se trasladaron a las instalaciones del Instituto Tecnológico del Valle de Oaxaca (ITVO).

Se tomó una muestra aleatoria de 50 frutos de cada árbol, a los que se les midió con un vernier *Pretul* de 0.1 cm de precisión, su diámetro polar (Dp, mm) y su diámetro ecuatorial (DE, mm); se calculó el coeficiente de forma (CF=DE/Dp) y se pesaron (g) de manera individual con una balanza analítica *Ohaus Adventurer*™ con capacidad máxima de 210 g y precisión de 0.1 g, para obtener el número de frutos kg⁻¹. Posteriormente, para su secado se colocaron bajo radiación solar durante cuatro días; paso seguido, se separó la semilla de los tejidos del fruto, para después medir su diámetro polar y ecuatorial; por último, se les pesó para obtener el número de semillas kg⁻¹.

Con los datos de las variables morfológicas se calcularon índices estructurales y se realizaron histogramas de frecuencia, para ello se utilizaron categorías diamétricas comerciales de 5 cm y categorías de altura a intervalos \leq 1.5, 1.5 - 3, 3.1 - 4.5, 4.6 - 6 y >6 (en metros). Se determinaron tres índices de valoración estructural (Zarco *et al.*, 2010; Santiago, 2013):

$$IVI = DRr + Dr + Fr$$

$$IVF = DPr + Ar + ACr$$

$$IC = \left\lceil \frac{sdbh}{A} \right\rceil$$

Donde:

IVI = Índice de valor de importancia

DMr = Dominancia relativa o área basal relativa (ABr)

Dr = Densidad relativa

Fr = Frecuencia relativa

IVF = Índice de valor forestal

DPr = Diámetro al pie relativo (cm)

Ar = Altura relativa (m)

ACr =Área de copa relativa (m^2)

IC = Índice de complejidad

s = Número de especies

d = Densidad de árboles mayores a 2.5 cm de DP

 $b = \text{Área basal (m}^2)$

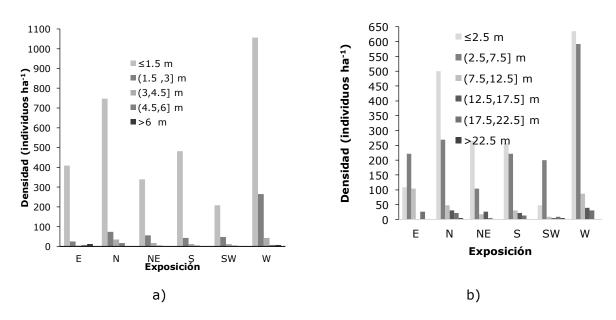
h = Altura (m) de los tres árboles dominantes

 $A = \text{Área de la muestra (m}^2)$

Manejo y análisis de datos

En los datos de frutos, semillas y árboles se verificaron los supuestos de normalidad y homogeneidad de varianzas, mediante las pruebas de *Shapiro-Wilk* y *Bartlett*. Las variables que los cumplieron se sometieron a un análisis de varianza con un diseño completamente aleatorizado y se realizaron comparaciones de medias aplicando la prueba de *Duncan* ($\alpha = 0.05$), en la que se usó como variable clasificatoria el árbol de procedencia, la exposición, altitud y pendiente; para las dos últimas se formaron tres categorías de manera individual.

Para la rutina de análisis se empleó el programa de cómputo SAS (2004), con el procedimiento GLM. En el caso de las variables que no cumplieron con los supuestos de normalidad y homogeneidad de varianzas, se analizaron mediante la prueba de *Kruskal Wallis* con el procedimiento *NPAR1WAY Wilcoxon*, en el paquete estadístico SAS (SAS, 2004).


Resultados y Discusión

Estructura vertical y horizontal

Las diferencias de tamaño de árboles de una misma especie ubicados en sitios de exposición diferente se pueden atribuir a que la magnitud de crecimiento es función de las potencialidades definidas por el genotipo, el ambiente y la interacción de ambas. Ramírez y Rodríguez (2004) comentan que la diferencia del crecimiento de los árboles se atribuye a que en el hemisferio norte la exposición sur es la que recibe mayor cantidad de radiación solar. En este sentido, Ortiz-Pulido y Pavón (2010) indican que la exposición del sitio y la cantidad de radiación solar incidente influye en la diferenciación sexual de los individuos de *Bursera*, ya que los árboles en sitios orientados al este corresponden con más frecuencia al sexo masculino, y en los grupos orientados al oeste al sexo femenino.

Sánchez y López-Mata (2003) definen a la altitud como un factor físico que influye sobre las condiciones climáticas, a través de variables como la temperatura y la precipitación, que tienen, a su vez, un efecto directo sobre el crecimiento vegetal y están correlacionadas de forma específica en cada sitio. Martínez et al. (2013) mencionan que se han determinado relaciones entre el crecimiento de coníferas y los factores de profundidad de suelo, altitud, pendiente y exposición. Rubio et al. (2011), al estudiar la vegetación de Quercus, atribuyeron las diferencias observadas al estado sucesional vegetal y a que las especies sucesionales tempranas producen semillas más pequeñas.

Las alturas máximas en las unidades muéstrales (UM) fueron de 6.60 m; con fines descriptivos de la vegetación, se identificaron dos estratos: inferior y superior. El estrato inferior está constituido, principalmente, por individuos ≤ 1.5 m, reunidos, en su mayoría, en la exposición oeste (1 057 árboles ha⁻¹) y 326 individuos ha⁻¹ mayores a 1.5 m. En los sitios ubicados en la exposición suroeste, se contabilizó la menor densidad de ejemplares arbóreos en el estrato inferior (209 individuos ha⁻¹). Los individuos de *B. simplex* conforman el estrato superior, con alturas ≥ 2 m (Figura 1a).

Figura 1. Frecuencia de individuos de acuerdo con sus categorías de altura (a) y diámetro (b) en diferentes exposiciones.

Gutiérrez et al. (2011), en la vegetación de selva baja caducifolia de tres localidades del estado de Yucatán, registraron datos similares, mismos que obtuvieron de agrupaciones con individuos de 1.5 a 4.4 m. Dzib-Castillo et al. (2014), al referirse a la vegetación en las comunidades de Pomuch y San José Carpizo en Campeche, calcularon alturas de 6.3 m en selva baja caducifolia y diámetros de 6.9 cm. En una selva baja caducifolia de Xmatkuil, Yucatán, Gutiérrez y Zamora (2012) midieron individuos de 4 a 12 m de altura y Castillo et al. (2007) describieron tres estratos arbóreos de 1 a 7 m en la vegetación del estado de Veracruz.

En el presente trabajo, en la estructura horizontal se cuantificó una mayor densidad de individuos con diámetros < 2.5 cm en todas las exposiciones, seguidos de los diámetros superiores a 2.5 e inferiores a 7.5 cm, muy relacionadas con las alturas que fueron más pronunciadas en la exposición oeste (Figura 1b); esto se explica por la frecuencia de individuos con diámetros superiores, que disminuye a medida que alcanzan dimensiones más grandes, lo que supone que siempre las clases de diámetro menores serán más abundantes.

Los índices estructurales (IVI, IVF, IC) mostraron diferencias estadísticas significativas (p≤ 0.0001), en su efecto sobre los rasgos morfológicos de los frutos (Cuadro 1). Dichas diferencias se deben, principalmente, a que la estructura está determinada por características morfológicas de los árboles situados en una zona específica, así como por la densidad y la competencia, lo cual implica relaciones dinámicas entre individuos para competir por nutriments o para obtener mejor desarrollo de sus estructuras. Por ello, no siempre una mayor complejidad representará la estabilidad más alta del ecosistema; además, el arreglo espacial de los individuos determina la morfología particular de la planta (Del Río *et al.*, 2003; Perreta y Vegetti, 2005). Alvis (2009) y Zarco *et al.* (2010) indican que el IVI revela el peso ecológico de una especie dentro de una población.

Cuadro 1. Variables morfológicas de fruto-semilla en relación a los índices estructurales.

	Variable						
Índice	Peso fruto (g)	Cf fruto	Frutos kg ⁻¹	Peso semilla (g)	CF semilla	Semilla kg ⁻¹	
IVF	673.04**	585.16**	637.04**	656.56**	259.56**	256.56**	
IVI	695.86**	690.44**	695.86**	802.1**	282.65**	802.1**	
IC	644.34**	588.37**	644.34**	650.17**	241.52**	650.17**	

IVF = Índice de Valor Forestal; IVI = Índice de Valor de Importancia; IC = Índice de Complejidad; CF = Coeficiente de Forma; ** Altamente significativos (Duncan, 0.05).

Características de frutos y semillas

Los frutos y semillas recolectados de 27 árboles de *Bursera simplex* presentaron diferencias estadísticas significativas en el peso, coeficiente de forma (CF) y en el número de semillas kg^{-1} ($p \le 0.0001$) en función del árbol de procedencia. La mayor heterogeneidad (CV >65 %) se estimó para el peso de la semilla y número de semillas kg^{-1} ; la menor variación se registró para el CF del fruto y el CF de las semillas (CV=7.42 y 13.36 %, respectivamente) (Cuadro 2).

Cuadro 2. Resumen del análisis de varianza de variables morfológicas de frutos y semillas de *Bursera simplex* Rzed. & Calderón.

Variable	Fuente de variación	Grados de libertad	Cuadrados medios	Coeficiente de variación (%)	Desviación estándar
	Árbol	26	0.209**		
Peso del fruto	Rep	49	0.014**	10.72	0.05
Peso dei fruto	Error	1 274	0.003	18.72	
	Total 1 349				
	Árbol	26	0.181**		
Coeficiente de forma del fruto	Rep 49 0.008 ^{ns}		7.92	0.05	
Coefficiente de forma dei fruto	Error	1 274	0.003	7.92	0.05
	Total	1 349			
	Árbol	26	0.009**		0.03
Dana da la cassilla	Rep	49	0.001**	CE 12	
Peso de la semilla	Error	1 274	0.0009	65.13	
	Total	1 349			
	Árbol	26	0.129**		0.09
Castinianta da farrar da la carrilla	Rep	49	0.008 ^{ns}	12.26	
Coeficiente de forma de la semilla	Error	1 274	0.008	13.36	
	Total	1 349			
	Árbol	26	40062159		724.24
N/man de foute a (15-1)	Rep	49	2527007	20.55	
Número de frutos (kg ⁻¹)	Error	1 274	524537	20.55	
	Total	1 349			
	Árbol	26	1955037863**		5354.54
NAME OF THE PARTY	Rep	49	103220988**	22.24	
Número de semillas kg ⁻¹	Error 1 274 28671		28671108	22.21	5354.54
	Total	1 349			

Rep = Repetición; **Altamente significativos (*Duncan*, 0.05).

Del árbol 5 se seleccionaron los frutos de tamaño y peso superior $(0.42\pm0.09~g)$, por lo que la cantidad de frutos kg^{-1} es baja (2456 ± 571.46) ; dichas magnitudes fueron significativamente diferentes (*Duncan*, 0.05) a los tamaños y pesos de los frutos de los árboles 3, 9 y 16, que pesaron $0.18\pm0.03~g$; y la cantidad de frutos kg^{-1} fue de 5 743.7±1 138.21, 5 $566\pm998.51~y$ 5 743.7±1 138.21, respectivamente.

Dada la relación diámetro ecuatorial - diámetro polar, el CF en fruto de los árboles 1, 15, 19 y 23 fue superior $(0.81\pm0.06 \text{ cm})$ al igual que en el árbol 10 $(0.81\pm0.05 \text{ cm})$; esto implica frutos de forma casi esférica.

El mayor CF en las semillas se obtuvo en los frutos del árbol 25 (0.79 ± 0.01 cm), que fue estadísticamente diferente (p = 0.0001). El individuo 21 presentó las semillas de mayor peso (0.08 ± 0.13), que producen 16 179 ±5 036 semillas kg⁻¹, mientras que las del árbol 3 fueron más pequeñas, por lo que se tienen 35 489 ±10 209 semillas kg⁻¹ (Cuadro 3).

Cuadro 3. Frutos-semillas de 27 árboles de *Bursera simplex* Rzed. & Calderón de Santa María Zoquitlán, Oaxaca.

	Variable y significancia						
Árbol	Peso de fruto (g) (0.0001)	Coeficiente de forma de fruto (cm)	Frutos kg ⁻¹ (0.0001)	Peso de semilla (g) (0.0001)	Coeficiente de forma de semilla (0.0001)	Semillas kg ⁻¹ (0.0001)	
1	0.30±0.05 d	0.81±0.06 a	3 439.3±791.20 c	0.03±0.007 ghi	0.74±0.12 abc	29 328±6 694 c	
2	0.25±0.05 e	0.70±0.06 e	4 142.4±991.18 b	0.04±0.008 defgh	0.70±0.09 bcd	22 318± 4 441 ghi	
3	0.18±0.03 f	0.78±0.07 bc	5 743.7±1138.21 a	0.03±0.030 ghi	0.68±0.07 ghi	35 489±10 209 a	
4	0.30±0.05 d	0.68±0.04 ef	3 438.4±704.60 c	0.03±0.006 hi	0.67±0.09 ghi	32 712±7 347 b	
5	0.42±0.09 a	0.77±0.04 cd	2 456.0±571.46 e	0.06±0.010 bc	0.75±0.08 abc	17 283±4 157 klm	
6	0.35±0.06 c	0.76±0.05 cd	2 878.1±544.05 d	0.05±0.070 bcde	0.76±0.08 abc	22 065± 5 000 hi	
7	0.38±0.06 b	0.64±0.06 g	2 678.6±539.12 de	0.04±0.009 defgh	0.68±0.13 fgh	22 585±5 521 ghi	
8	0.30±0.05 d	0.80±0.06 ab	3 430.5±821.21 c	0.03±0.005 fghi	0.72±0.08 cdef	25 476±3 648 ef	
9	0.18±0.03 f	0.69±0.09 e	5 566.4±998.51 a	0.02±0.005 i	0.63±0.08 jkl	36 983±7 395 a	
10	0.40±0.04 ab	0.81±0.05a	2 512.8±292.90 e	0.03±0.007 fghi	0.73±0.09 bcde	26 947±5 694 ed	
11	0.29±0.07 d	0.75±0.05 d	3 615.2±1003.62 c	0.03±0.007 hi	0.69±0.09 efg	32 719±6 556 b	
12	0.32±0.08 d	0.66±0.04 fg	3 279.4±757.19 c	0.03±0.006 ghi	0.64±0.09 hijk	28 658±5 709 cd	
13	0.30±0.05 d	0.68±0.05 ef	3 427.7±686.91 c	0.04±0.005 fghi	0.69±0.09 efgh	24 671±3 465 fg	
14	0.40±0.05 ab	0.80±0.06 ab	2 492.5±376.73 e	0.04±0.009 efgh	0.74±0.06 bc	23 198±5 262 gh	
15	0.30±0.05 d	0.81±0.06 a	3 438.4±704.60 c	0.03±0.005 ghi	0.73±0.09 bcde	28 966±5 515 cd	
16	0.18±0.03 f	0.78±0.07 bc	5 743.7±1138.21 a	0.07±0.010 b	0.66±0.07 ghij	14 964±4 020 m	
17	0.30±0.05 d	0.80±0.06 ab	3 430.5±821.21 c	0.03±0.005 hi	0.72±0.07 cde	31 849±4 752 b	
18	0.25±0.05 e	0.70±0.06 e	4 142.4±991.18 c	0.06±0.010 bc	0.63±0.08 ijk	17 046±4 198 lm	
19	0.30±0.05 d	0.81±0.06 a	3 438.4±704.60 c	0.06±0.006 bcd	0.61±0.08 kl	16 790±2 022 lm	
20	0.30±0.05 d	0.68±0.04 ef	3 438.4±704.60 c	0.04±0.010 cdefg	0.59 ±0.08 l	22 709±6 809 ghi	
21	0.35±0.06 c	0.76±0.05 cd	2 887.1±544.05 d	0.08±0.13 a	0.67±0.08 ghi	16 179±5 036 lm	
22	0.30±0.05 d	0.80±0.06 ab	3 430.5±821.21 c	0.04±0.007 defgh	0.72±0.08 cdef	21 982±3 572 hi	
23	0.30±0.05 d	0.81±0.06 a	3 439.3±791.20 c	0.05±0.02 bcde	0.67±0.09 ghi	19 385±5 940 jk	
24	0.30±0.05 d	0.80±0.06 ab	3 430.5±821.21 c	0.06±0.001 bcd	0.69±0.09 defg	17 512±4 748 kl	
25	0.32±0.08 d	0.66±0.04 fg	3 279.4±757.19 c	0.04±0.008 defgh	0.79±0.01 a	22 127±4 279 hi	
26	0.30±0.05 d	0.68±0.05 ef	3 427.7±686.91 c	0.05±0.02 bcde	0.76±0.09 abc	19 538±8 972 jk	
27	0.40±0.05 ab	0.80±0.06 ab	2 492.5± 376.73 e	0.05±0.01 cdef	0.77±0.08 ab	20 606±5 160 ij	

Media acompañada±desviación estándar. Letras distintas en columnas representan diferencias estadísticas significativas (*Duncan*, 0.05).

Posiblemente, las variaciones morfológicas en frutos y semillas de los diferentes árboles resultan del tipo de reproducción propia de *Bursera simplex*, ya que su condición dioica promueve la polinización cruzada, y, por lo tanto, mayor diversidad en la descendencia (Edwards y Sharitz 2000; Enríquez *et al.*, 2004; Rzedowski y Calderón 2006; Magallán *et al.*, 2009). La variabilidad morfológica observada en frutos y semillas podría tener un notable componente genético además del ambiental (Gómez *et al.*, 2010).

Guzmán y Cruz (2014) refieren que el crecimiento del fruto se relaciona con la humedad disponible, ya que cuando esta baja y las temperaturas elevadas, los frutos son de tamaño menor, además de que varía de acuerdo a la posición que ocupan en el árbol; los frutos grandes se desarrollan en la parte superior de la copa por la mayor disponibilidad de azúcares y proteínas producidas en el área fotosintética, en comparación con los de la porción inferior de la copa. Con base en lo anterior, Rubio *et al.* (2011) señalan que la variación en el tamaño de las semillas es importante debido a que proporciona diversas capacidades para establecerse en sitios con diferentes condiciones.

Gonzáles y Cruz (1995) citan que los frutos con CF cercanos a la unidad poseen diámetros (polar y ecuatorial) homogéneos y son de forma esférica, mientras que los valores que se alejan de ella describen frutos de forma alargada. Las condiciones del sitio, como la altitud, la exposición y la pendiente del terreno en que se desarrolla el árbol influyen en la magnitud de su crecimiento, lo que a su vez incide en las características morfológicas de los frutos y las semillas ($p \le 0.01$). Los frutos de mayor peso 0.34 ± 0.07 g se recolectaron en árboles localizados en sitios con exposición sur; y las semillas de los individuos con exposición suroeste pesaron 0.06 ± 0.07 g; en contraste, las procedentes de sitios con exposiciones norte y noreste pesaron 0.03 g.

El CF de frutos y semillas refleja diferencias estadísticas significativas (p \leq 0.0002); de esta manera se confirma que los frutos con mayor CF fueron los recolectados de árboles localizados en sitios con exposición este, con 0.81 ± 0.06 cm, lo que contrasta con las semillas procedentes de árboles en exposición sur, cuyo CF fue de 0.72 ± 0.10 cm; las semillas recolectadas de árboles en lugares con exposición suroeste tuvieron un CF mayor (p=0.72±0.09 cm). La cantidad de frutos y semillas kg⁻¹ fue estadísticamente diferente

(p=0.0001), pues las semillas de árboles situados en exposición noreste acumularon 4 235±1 338 frutos kg⁻¹, cifra superior a la de la exposición sur, 3 054±787 frutos kg⁻¹; caso similar ocurre en las semillas de árboles con exposición noreste, que dieron un total de 30 124±8 746 (Cuadro 4).

Cuadro 4. Variables evaluadas en función de la exposición, pendiente y altitud.

	Variables de fruto-semilla							
Variable de sitio	(probabilidad)							
variable de sitio	PF (g)	CFF (cm)	Frutos kg ⁻¹	PS (g)	CFS (cm)	Semilla kg ⁻¹		
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0002)	(0.0001)		
Exposición								
Sur	0.34±0.07 a	0.72±0.10 c	3 054.6±787.66 d	0.05±0.01 b	0.69±0.11 bcd	20 048.4±5 722.6 d		
Oeste	0.33±0.09 ab	0.75±0.56 b	3 236.6±1 111.22 dc	0.05±0.02 b	0.70±0.11 abc	22 186.3±6 908.4 c		
Suroeste	0.32±0.06 bc	0.75±0.07 b	3 248.4±734.85 dc	0.06±0.07 a	0.72±0.09 a	19 233±6 686.4 d		
Este	0.30±0.05 c	0.81±0.06 a	3 439.3±791.20 c	0.05±0.02 ab	0.67±0.09 d	19 385.1±5 940.5d		
Norte	0.27±0.07 d	0.75±0.09 b	3 879.8±1 168.08 b	0.03±0.01 c	0.68±0.09 cd	28 146.7±8 076.2 b		
Noreste	0.25±0.07 e	0.76±0.07 b	4 235.2±1 338.91 a	0.03±0.01 c	0.71±0.01 ab	30 124.4±8 746.8 a		
Pendiente (%)								
≤25	0.30±0.05 a	0.81±0.06 a	3 438.4±704.60 b	0.06±0.006 a	0.61±0.08 c	16 789±2 022.8 c		
(25,40]	0.31±0.08a	0.75±0.08 b	3 421.4±1 131.96 b	0.04±0.03 b	0.71±0.10 a	23 898.8±8 082.0 b		
>40	0.26±0.08 b	0.71±0.08 c	4 104.7±1 271.68 a	0.04±0.01 b	0.66±0.09 b	27 040±8 962 a		
Altitud(m)								
≤1 178	0.24±0.07 c	0.76±0.08 a	4 441.81±1 375.15 a	0.03±0.01 b	0.72±0.10 a	29 259.4±8 974.6 a		
(1 178-1 278]	0.36±0.08 a	0.74± 0.07 b	3 531.67±725.56 b	0.04±0.03 a	0.72±0.09 a	23 985.7±7 212.7 b		
>1 278	0.30±0.08 b	0.75±0.08 ab	2 940.33±1 128.83 c	0.04±0.03 a	0.69±0.10 b	23 316.9±8 140.1 b		

Media acompañada ±desviación estándar. Letras distintas en columnas representan diferencias estadísticas significativas (*Duncan*, 0.05); PF = Peso de fruto; DPF = Diámetro polar de fruto; CFF = Coeficiente de forma de fruto; PS = Peso semilla; CFS = Coeficiente de forma de semilla.

Las pendientes mostraron diferencias significativas (p \leq 0.001); de los árboles ubicados en sitios con 25 y 40 %, se recolectaron los frutos de tamaño mayor, con una media de 0.31 g y la producción de frutos kg⁻¹ es favorable en pendientes >40 %, puesto que presentan un promedio de 4 104 frutos kg⁻¹, con CF de 0.71 \pm 0.008 cm. De árboles localizados en lugares con poca pendiente se recolectaron frutos que tienden a ser redondos, a diferencia aquéllos procedentes de pendientes más pronunciadas, que perfilan forma alargada.

No sucede lo mismo con las semillas recolectadas de árboles situados en sitios pendientes <25 %, pues entre 25 y 40 % de pendiente, alcanzaron un peso superior (0.06 g), con coeficientes de forma de 0.71; mientras que, las semillas procedentes de árboles localizados en sitios con pendientes >40 % fueron más pequeñas, pero más abundantes (27 040 semillas kg⁻¹); en contraste con las obtenidas en árboles ubicados en pendientes <25 % que fueron más grandes, con un total de 16 789 semillas kg⁻¹ (Cuadro 4).

La altitud de los sitios en que crecen los árboles también fue un factor con efecto significativo ($p \le 0.01$), pues en el intervalo altitudinal entre 1 178 y 1 278 m, el peso de los frutos fue de 0.36 g, con los menores CF (0.74); estos datos contrastan con los observados en altitudes ≤ 1 178 m, cuyo CF fue de 0.76; a la misma altitud, la producción de frutos fue de 4 441.

La semilla tuvo una respuesta similar con 0.04 g en altitudes >1 178 m; sin embargo, la producción de semillas fue mayor en altitudes ≤ 1 178 m (29 259.4) con coeficientes de forma de 0.72 cm en altitudes ≤ 1 278 m (Cuadro 4).

Las diferencias en la morfología de los frutos y semillas, en relación a las características propias del sitio (exposición, pendiente y altitud), se explican porque son componentes influyen en la radiación solar que incide sobre la planta, la temperatura y la humedad ambiental; condiciones que afectan la productividad primaria de la especie. En su estudio realizado en *Quercus*, Márquez *et al.* (2005) refieren que las diferencias de tamaños se deben a factores biológicos y físicos, además de que el tamaño de las semillas en una

especie puede variar entre poblaciones o entre individuos, por razones genéticas o por la historia de vida de cada planta (Griffiths *et al.*, 2009; García *et al.*, 2015).

Conclusiones

La estructura poblacional de los árboles seleccionados como semilleros de *Bursera simplex* se caracteriza por tener una forma irregular, la cual es común en la selva baja caducifolia; de acuerdo con los índices evaluados, la estructura en que se desarrollan los árboles de *B. simplex* afecta el peso y la características morfología de los frutos y semillas.

En los sitios con exposición oeste se contabilizó el número mayor de individuos, además es donde existe mayor densidad de especies arbustivas, principalmente, con alturas \leq 1.5 m, así como individuos de mayor tamaño como las burseras con 265 individuos ha $^{-1}$. El árbol 21 es el mejor individuo semillero, ya que produce las semillas de peso más alto $(0.08\pm0.13~\rm g)$, con 16 179 \pm 5 036 semillas kg $^{-1}$; mientras que los frutos de mayor peso estuvieron asociados al árbol cinco $(0.42~\rm g)$ y 2 456 frutos kg $^{-1}$ con CF bajos y de forma elíptica. Las pendientes y altitudes de los sitios influyen en las características de los frutos y semillas, los árboles localizados en sitios con pendientes \leq 40 % producen los frutos de mayor peso.

Agradecimientos

Los autores desean expresar un agradecimiento especial a las autoridades de Bienes Comunales de Santa María Zoquitlán, Oaxaca, México, por las facilidades otorgadas para la realización de esta investigación.

Conflicto de intereses

Los autores declaran la inexistencia de conflictos de interés en el desarrollo de la presente investigación.

Contribución por autor

Jesús Jonathan Luna Cedeño: muestreo en campo; Gerardo Rodríguez Ortiz y J. Ángel García Aguilar: análisis estadístico de datos; José Raymundo Enríquez del Valle, Judith Ruíz Luna y Gisela V. Campos Ángeles: análisis de laboratorio.

Referencias

Acosta, S., A. Flores, A. Saynes, R. Aguilar y G. Manzanero. 2003. Vegetación y Flora de una zona semiárida de la cuenca alta del río Tehuantepec, Oaxaca, México. Polibotánica 16:125-152. http://www.redalyc.org/articulo.oa?id=62101607 (10 de octubre de 2017).

Alba, L. J. y R. J. Márquez. 2006. Potencial y eficiencia de producción de semillas de *Pinus oaxacana* Mirov de los Molinos, Perote, Veracruz. Foresta Veracruzana 8(1):31-36. http://www.redalyc.org/articulo.oa?id=49780106 (1 de octubre de 2017).

Alvis G., J. F. 2009. Análisis estructural de un bosque natural localizado en zona rural del municipio de Popayan. Facultad de Ciencias Agropecuarias 7(1):115-122. http://www.scielo.org.co/pdf/bsaa/v7n1/v7n1a13.pdf (2 de septiembre de 2017).

Balcorta M., H. C. y J. J. Vargas H. 2004. Variación fenotípica y selección de árboles en una plantación de melina (*Gmelina arborea* Linn., Roxb.) de tres años de edad. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 10(1):13-19. http://www.redalyc.org/articulo.oa?id=62910102 (4 de agosto de 2017).

Cano F., A. 2013. Biotransformación de triterpenos con diferentes microorganismos. Revista Mexicana de Ciencias Farmacéuticas 44(2):7-16.

http://www.redalyc.org/pdf/579/57929952002.pdf (18 de marzo de 2017).

Castellanos B., J. F., E. J. Treviño G., Ó. A. Aguirre C., J. Jiménez P., M. Musálem S. y R. López A. 2008. Estructura de bosques de pino patula bajo manejo en Ixtlán de Juárez, Oaxaca, México. Madera y Bosques 14(2):51-63.

http://www.redalyc.org/articulo.oa?id=61711316005 (15 de febrero de 2017).

Castillo C., G., P. Dávila A. y J. A. Zavala H. 2007. La selva baja caducifolia en una corriente de lava volcánica en el centro de Veracruz: lista florística de la flora vascular. Boletín de la Sociedad Botánica de México 80:77-104. http://www.redalyc.org/pdf/577/57780008.pdf (28 de febrero de 2017).

Cerón R., J. J. y J. Sahagún C. 2005. Un índice de selección basado en componentes principales. Agrociencia 39(6):667-677. http://www.redalyc.org/articulo.oa?id=30239610 (29 d febrero de 2017).

Corral R., J. J., O. A. Aguirre C., J. Jiménez P. y S. Corral R. 2005. Un análisis del efecto del aprovechamiento forestal sobre la diversidad estructural en el bosque mesófilo de montaña "El Cielo", Tamaulipas, México. Investigación Agraria: Sistemas y Recursos Forestales 14(2):217-228.

http://www.inia.es/gcontrec/pub/217-228-(30_0S)-Un analisis 1162281437750.pdf (30 de marzo de 2017).

Cuevas, G. E. y C. A. Abarca G. 2006. Origen, mantenimiento y evolución del ginodioicismo. Boletín de la Sociedad Botánica de México 78:33-42.

http://www.redalyc.org/articulo.oa?id=57707804 (1 de enero de 2017).

Del Río, M., F. Montes, I. Cañellas y G. Montero. 2003. Revisión: Índices de diversidad estructural en masas forestales. Investigación Agraria: Sistemas y Recursos Forestales 12(1):159-176.

https://www.researchgate.net/profile/Miren Rio2/publication/28061992 Indices de diversidad estructural en masas forestales/links/0deec51c3fa0f63666000000/Indices-de-diversidad-estructural-en-masas-forestales.pdf (12 de marzo de 2017).

Dzib-Castillo, B., C. Chanatásig-Vaca y N. A. González-Valdivia. 2014. Estructura y composición en dos comunidades arbóreas de la selva baja caducifolia y mediana subcaducifolia en Campeche, México. Revista Mexicana de Biodiversidad 85:167-178. http://dx.doi.org/10.7550/rmb.38706 (24 de octubre de 2017).

Edwards, L. A. and R. R. Sharitz. 2000. Population genetics of two rare perennials in isolated wetlands: *Sagitaria isoetiformis* and *S. teres* (alismataceae). American Journal of Botany 87(8):1147-1158. http://www.amjbot.org/content/87/8/1147.full (23 de diciembre de 2017).

Enríquez P., E. G., H. Suzán A. y G. Malda B. 2004. Viabilidad y germinación de semillas de *Taxodium mucronatum* (Ten.) en el estado de Querétaro, México. Agrociencia 38(3):375-381. http://www.redalyc.org/articulo.oa?id=30238311(18 de diciembre de 2017).

García A., J. Á., G. Rodríguez O. y J Martínez de la C. 2015. Influencia de variables fisiográficas en la productividad de biomasa aérea en bosques mixtos. Revista Mexicana de Agroecosistemas 2(2):87-98.

http://www.itvalleoaxaca.edu.mx/posgradoitvo/RevistaPosgrado/docs/RMAE vol 2 2 2015/RMAE 2015-2(2)-pdf/4 RMAE 2015-12 Biomasa-resumen.pdf (2 de octubre de 2017).

Gigliarelli, G., J. X. Becerra, M. Curini and M. C. Marcotullio. 2015. Chemical composition and biological activities of fragrant Mexican copal (*Bursera* spp.). Molecules 20: 22383–22394.

Gómez J., D. M., C. Ramírez H., J. Jasso M. y J. López U. 2010. Variación en características reproductivas y germinación de semillas de *Pinus leiophylla* Schiede ex Schltdl. & Cham. Revista Fitotecnia Mexicana 33(4):297-304. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-

73802010000400007 (1 de mayo de 2017).

Gonzáles M., J. C. y J. P. Cruz H. 1995. Caracterización de frutos de pitaya *Stenocereus griseus* H., en la Mixteca. Revista Chapingo Serie horticultura 4:77-81. http://dx.doi.org/10.5154/r.rchsh.1994.08.053 (13 de octubre de 2017).

Griffiths, R. P., M. D. Madritch and A. K. Swanson. 2009. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management 257:1-7. http://www.sciencedirect.com/science/article/pii/S0378112708006282 (25 de abril de 2017).

Gutiérrez, B. C., J. J. Ortiz D., J. S. Flores G., P. Zamora C., M. R. Domínguez C. y P. Villegas. 2011. Estructura y composición florística de la selva mediana subcaducifolia de Nohalal-Sudzal Chico, Tekax, Yucatán, México. Foresta Veracruzana 13(1):7-14. http://www.redalyc.org/articulo.oa?id=49719786002(18 de agosto de 2017).

Gutiérrez B., C. y P. Zamora C. 2012. Especies leñosas de la selva baja caducifolia de Xmatkuil, Yucatán, México. Foresta Veracruzana 14(2):9-14. http://www.redalyc.org/pdf/497/49728290002.pdf (11 de agosto de 2017).

Guzmán P., A. M. y E. Cruz C. 2014. Características físicas de frutos de cuachalalate (*Amphipterygium adstringens* (Schltdl.) Standl) de tres procedencias. Revista Fitotecnia Mexicana 37(39):255-260.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802014000300012 (11 de agosto de 2017).

Hernández P., E., M. González E., I. Trejo y C. Bonfil. 2011. Distribución del género *Bursera* en el estado de Morelos, México y su relación con el clima. Revista Mexicana de Biodiversidad 82(3):964-976.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-34532011000300021 (11 de agosto de 2017).

Jiménez P., J., E. Alanís R., O. Aguirre C., M. Pando M. y M. González T. 2009. Análisis sobre el efecto del uso del suelo en la diversidad estructural del matorral espinoso tamaulipeco. Madera y Bosques 15 (3): 5-20. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712009000300001 (11 de agosto de 2017).

Ledo, A., S. Condes y F. Montes. 2012. Revisión de índices de distribución espacial usados en inventarios forestales y su aplicación en bosques tropicales. Revista Peruana de Biología 19(1):113-124. http://www.scielo.org.pe/scielo.php?pid=S1727-99332012000100017&script=sci arttext (2 de febrero de 2017).

López, C., K. S. Chanfón y G. Segura W. 2005. La riqueza de los bosques mexicanos: más allá de la madera. Experiencias de comunidades rurales en Latinoamérica. Ed. Talleres de Servicios Aplicados de Impresión. México, D.F., México. pp. 86-87.

http://www.cifor.org/publications/pdf_files/Books/BLopez0501S0.pdf (12 de diciembre de 2017).

Magallán H., F., M. Martínez, L. Hernández S. y K. Oyama. 2009. Estructura genética de poblaciones de *Eriocaulon bilobatum* (Eriocaulaceae): una especie amenazada de humedades temporales. Boletín de la Sociedad Botánica de México 85:81-88. http://www.scielo.org.mx/scielo.php?script=sci arttext&pid=S0366-21282009000200008 (12 de abril de 2017).

Márquez R., J., L. C. Mendizábal H. y C. I. Flores R. 2005. Variación de semillas de *Quercus oleoides* Schl. *et* Cham. de tres poblaciones de centro de Veracruz, México. Foresta Veracruzana 7(1):31-36. http://www.redalyc.org/pdf/497/49770106.pdf (1 de diciembre de 2017).

Martínez S., M., R. D. Valdez C. y M. Pompa G. 2013. Influencia de variables físicas en la productividad de *Pinus arizonica* y *Pinus engelmannii* en el sur de Chihuahua, México. Madera y Bosques 19(3):35-49. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712013000300004 (1 de mayo de 2017).

Nora, S., G. Albaladejo R., S. C. González M., J. J. Robledo A. y A. Aparicio. 2011. Movimiento de genes (polen y semillas) en poblaciones fragmentadas de plantas. Ecosistemas 20(2):35-45. http://www.redalyc.org/articulo.oa?id=54022121004(18 de diciembre de 2017).

Ortiz-Pulido, R. and P. Pavón N. 2010. Influence of slope orientation on sex ratio and size distribution in a dioecious plant *Bursera fagaroides var. purpusii* (Brandeg.) McVaugh and Rzed. (Burseraceae). Plant Ecology 208(2):271-277. http://dx.doi.org/10.1007/s11258-009-9704-2(1 de agosto de 2017).

Perreta, M. G y A. C. Vegetti. 2005. Patrones estructurales en las plantas vasculares: una revisión. Gayana Botánica 62(1):9-19.

http://www.scielo.cl/scielo.php?script=sci arttext&pid=S0717-66432005000100003 (2 de febrero de 2017).

Ramírez C., A. y D. A. Rodríguez T. 2004. Efecto de calidad de planta, exposición y micrositio en una plantación de *Quercus* rugosa. Revista Chapingo Serie Ciencias Forestales y del Ambiente 10(1):5-11. https://chapingo.mx/revistas/revistas/articulos/doc/rchscfaX403.pdf (2 de febrero de 2017).

Rubio L., L. E., S. Romero R., E. C. Rojas Z., A. Durán D. y J. C. Gutiérrez G. 2011. Variación del tamaño de frutos y semillas en siete especies de encino (*Quercus*, Fagaceae). Polibotánica 32:135-151.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-27682011000200008 (2 de febrero de 2017).

Rzedowski, J. y G. Calderón. 2006. Dos especies de *Bursera* (Burseraceae) de México. Acta Botánica Mexicana 74:169-178.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-71512006000100003(12 de diciembre de 2017).

Sánchez G., A. y L. López-Mata. 2003. Clasificación y ordenación de la vegetación del norte de la sierra, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología, Serie Botánica 74(1):47-71. http://www.journals.unam.mx/index.php/bot/article/view/1958 (12 de diciembre de 2017).

Statistical Analysis System Institute (SAS) 2004. SAS/STAT 9.1 User's guide. SAS Institute Inc. Cary, NC, USA. 4979 p.

Santiago G., E. 2013. Evaluación de *Litsea glaucescens* Kunth en el área de conservación forestal de Analco, Ixtlán, Oaxaca. Tesis de Maestría en Ciencias en conservación de los recursos forestales. Universidad de la Sierra Juárez. Ixtlán de Juárez, Oax., México. 86 p.

Vallejos, J., Y. Badilla, F. Picado y O. Murillo. 2010. Metodología para la selección e incorporación de árboles plus en programas de mejoramiento genético forestal. Agronomía Costarricense 34(1):105-119.

http://revistas.ucr.ac.cr/index.php/agrocost/article/view/6704/6393 (12 de diciembre de 2017).

Villaseñor, J. L. 2003. Diversidad y distribución de las magnoliophyta de México. Interciencia 28 (3):160-167. http://www.redalyc.org/pdf/339/33907806.pdf (12 de diciembre de 2017).

Zarco E., V. M., J. I. Valdez H., G. Ángeles P. y O. Castillo A. 2010. Estructura y diversidad de la vegetación arbórea del parque estatal agua blanca, Macuspana, Tabasco. Universidad y Ciencia 26(1): 1-17. http://www.scielo.org.mx/pdf/uc/v26n1/v26n1a1.pdf (12 de diciembre de 2017).

Todos los textos publicados por la **Revista Mexicana de Ciencias Forestales**–sin excepción– se distribuyen amparados bajo la licencia *Creative Commons 4.0* <u>Atribución-No Comercial (CC BY-NC 4.0 Internacional)</u>, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.