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Abstract:

In the context of the mechanisms of climatic change mitigation, constant forest
monitoring is important because forests provide crucial information. The estimation
of forest stand attributes based on satellite imagery data combined with forest
inventory data allows producing accurate information on forest structure, at a relative
and accessible cost. However, there is still a need to use models that enable the
construction of a valid relationship between remote sensing and field data. Therefore,
this study aims to estimate forest attributes such as basal area (AB), volume (V) and
aboveground biomass (B) by analyzing and using the relationship between spectral
information, from Landsat ETM+ imagery, and tree measurements. Data from plots
collected in 2010 by the National Forest and Soils Inventory (INFyS) were used as
primary source of information. Results suggest that the best models to estimate AB,
V and B were those that used the near infrared band (band 5) as the independent
variable. Results also indicated that adjusted regression models shown statistical
bases to estimate AB, V and B in a precise manner. All regression models were highly

significant (5 %) with determination coefficients (R? aqj) higher than 0.47.
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Introduction

Forest ecosystems capture, store and release carbon as a result of photosynthetic
and respiratory processes and dry matter degradation (Razo et al., 2013), which
contributes directly to the abatement of the effects of climate change carbon
sequestration in their biomass. Therefore, within the context of climate change
abatement, forest monitoring is important because forests provide crucial information

on the effects of the process (Sinha et al., 2015).

Aboveground biomass and other forest parameters (e.g. volume, basal area, carbon
and leaf area index) are estimated using the direct and indirect methods. The former
consists of a destructive sampling; however, it is very slow and costly, which makes
its large scale application complicated. The latter is based on: i) statistical techniques
(allometric equations and biomass expansion factor) (Ayala et al., 2002) relating
variables that can be easily measured (normal diameter and total height) in forest
inventories with variables that are difficult to measure (e.g. volume and biomass)
(Navar, 2009; Aquino et al., 2015); and ii) models obtained from combinations of
data derived from the forest inventory and from remote sensing (Labrecque et al.,
2006; Hall et al., 2006).

The enhancement of the capacities of the various types of remote sensors provides
the opportunity to develop more efficient analysis techniques (Torres et al., 2016),
which in turn favors the obtainment of more consistent results in the assessment and
monitoring of forest resources. Remote sensors have comparative advantages over
the conventional inventory: optimization in time and financial supports, access to
inaccessible areas, and the execution of inventories in large forest surface areas (Hou
et al. 2011; Sinha et al., 2015: Timothy et al., 2016). For this reason, the estimation

of the forest biomass based on this technology is of great interest to achieve a
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sustainable forest management and to generate environmental policies (Latifi et al.,
2015).

The use of satellite imaging as auxiliary variables has made it possible to monitor the
forest resources constantly and to accurately estimate various attributes of this kind
(Dong et al., 2003; Valdez et al., 2006; Muiioz et al., 2014). However, the relationship
between data from remote sensing and field data must be further explored in order
to estimate the forest parameters. The objective of the study was to develop
regression models for the estimation of the basal area (BA), volume (V) and biomass
(B) with auxiliary variables of spectral data and vegetation indices obtained through

Landsat 7 ETM+ imaging.

Materials and Methods

Study area

The study area is located in the southeastern end of the State of Mexico and comprises
a surface area of 409 936 ha; between the coordinates 19°15'00" N and 100°37'00"
W, and 18°22'00" N and 99°45'00" W (Figure 1), within the hydrological region of
the Balsas river. Its climates are semiwarm ((A)C(w) and A(C)w) and warm, with a
mean annual temperature of 17.3 °C, and a mean annual precipitation of 939 mm
(Garcia-Conabio, 1998).

The main mighty rivers in the area are Temascaltepec, Sultepec, Topilar, San Pedro,
Amacuzac and Cutzamala (GEM, 2007). As for the orography, the region includes the
Sierra Temascaltepec mountain systems, whose morphology is rough and uneven,

with narrow valleys, gullies and ravines (GEM, 2007).

The prevalent geology consists of carbonated and vulcanosedimentary rocks of the

Higher Jurassic and lower Cretaceous periods, vulcanosedimentary rocks of the
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Higher Triassic and Lower Jurassic, and intrusive felsic rocks of the Tertiary period
(GEM, 2007).

The soils are mainly Regosols, Cambisols, Andosols and Phaeozems (Inifap, 1995).

The vegetation corresponds to a low deciduous forest; there are also Quercus spp.

and Pinus spp. forests, induced grasslands and rainfed agriculture (Inegi, 2013).
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Figure 1. Location of the study area in the State of Mexico.

Field data

17 clusters of the 2010 Forest and Soils Inventory of the State of Mexico (Probosque,
2010) corresponding to low deciduous forests of the southern extreme of the entity
(Figure 1) were used. Before calculating the variables, the database was cleared, and

the atypical values for the normal diameter (D) and total height (H) were deleted.

Each cluster consists of four rectangular sampling sites with a surface area of 400 m?

(Conafor, 2011). Information regarding the dasometric variables is available for each
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sampling site. The estimations of the variables BA (m?), V (m3) and B (kg) were
registered at tree level. The BA was estimated based on the 0.7854*DN? structure,
in which D is the normal diameter and 0.7854 is the constant resulting from the n/4

ratio.

The volume was estimated using two equations developed for the low deciduous
forest: 1) the equation of the National Forest and Soils Inventory (1973), and 2) the
equation derived from a manifestation of environmental impact in the regional
modality of the advanced management programs for the forests of eight ejidos in the
state of Morelos (Sinat, 2007) (Table 1). The general equation designed by Torres
and Guevara (2002) was used to estimate the total biomass in the low forest (Table
2).

Table 1. Equation to calculate the volume.

Equation Model Bo B1 B2 1
1 -0.77785 1.872175 0.815238
V = eBo pB1 HB2
2 -9.3156 2.38434 0.1666
Where:
V = Total volume (kg)
Bi = Value of the parameters
Table 2. Total biomass equation for the low deciduous forest.
2)

Equation Model Bo B1
3 B =By+ B %X (V) 12.225 313.036
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Where:
B = Total biomass (kg)

Bi = Value of the parameters

For each of the forest variables (BA, V and B), the addition was calculated per site
and per cluster. In order to extrapolate the values per hectare, the ratio of means

method was applied to each variable (Smelko and Merganic¢, 2008):

R=Y= Il 3)'766 Where:

n
X Ei=1Xi

R = Variable of interest expressed in has
Yi = Total value of the variable in all the 400 m? sites

Xi = Total sampled surface area in i sites.

Spectral variables

A Landsat 7 ETM+ was obtained through the United States Geological Survey (USGS,
2015), with a spatial resolution of 30 x 30 m (900 m?), at LT 1 and corrected by the
same processing system of the same American service (Landsat Ecosystem
Disturbance Adaptive Processing System: LEDAPS), which carries out geometric and
radiometric corrections (Masek et al., 2006). The date on which the image was taken
was July 30, 2010. The mean values of the pixels located within a 1 ha mask and
corresponding to the size of a duly georeferenced sampling cluster were estimated
(Hall et al., 2006; Mufoz et al., 2014). Three vegetation indexes (VI) were estimated
using mathematical transformations, as these reflect their status and allow modeling
the forest parameters accurately (ERDAS, 2011; Wijaya et al., 2010; Poulain et al.,
2010; Munoz et al., 2014).
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NDyI = ME=R 4)
NIR+R
GNDVI = MBS 5)
NIR+G
DVI = NIR — R 6)

Where:

NDVI = Normalized difference vegetation index
GNDVI = Green normalized vegetation index
DVI = Difference vegetation index

NIR = Near-infrared band

R = Red band

G = Green band

Analysis of the correlation between forest parameters and
spectral data

A Pearson’s correlation analysis was carried out to assess the correlation coefficient,
the R? and the level of significance to a rejection value under (o = 5 %) in order to
determine the degree of association between the parameters BA, V and B (dependent
variable and/or response) and each of the spectral bands and the vegetation index

(independent or predictive variable).
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Linear regression adjustment models

The variables that showed the highest correlation were used to build the linear
regression models in order to estimate the BA, V and B. The models were fitted using
the minimum ordinary squares (MOS) method with the SAS/ETS™ statistical package
(SAS, 2008). The MOS method provides the best unbiased linear estimators.

The selected models were evaluated based on the accuracy and numeric precision of
the adjustment statistics: determination coefficient (R2aq4j), root of the mean square
error (RMSE) and high significance in the parameters (o = 0.05 %). The highest and
lowest R244j values corresponded, respectively, to a greater precision and accuracy of
a model for estimating the basal area, volume and biomass. The best linear regression
models were used to map and obtain the spatial distribution of the forest parameters

of interest for each pixel in the image of the study area.

Estimation of the forest parameters in terms of total inventories

In order to estimate the total inventory of the forest parameters in the study area,
simple random sampling (traditional inventory) and the regression estimator
(alternative inventory) were used. The latter includes an auxiliary measure (spectral
bands and vegetation indices) that is highly correlated with the forest parameters
(Valdez et al., 2006; Ortiz et al., 2015). Therefore, the spectral variables and
vegetation indices with the highest degree of correlation with the forest parameters
were handled as auxiliary variables in the calculation of the regression estimators as
an alternative for updating the total inventory (Mufioz et al., 2014; Ortiz et al., 2015).

For the calculations of the total inventory, a surface area of 1 000 has was used; this
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made it possible to observe, compare and determine which method yielded the best
estimation in terms of the total inventory (traditional inventory vs alternative

inventory using remote sensing).

Results and Discussion

Analysis of the correlation between forest parameters and
spectral data

The average volume calculated for the low deciduous forest was 30.26 and
22.08 m?3 hal, estimated with the Vi1 and V> equations, respectively. Among the most
contrasting results are those obtained by Probosque (2010), Del Angel-Mobarak
(2012) and Conafor (2012), with figures of 35.01, 29.58 and 23.72 m3 hal,
respectively, for the national volume in the low deciduous forest. Thus, the mean
volume in this study is within the national range registered by other studies, which
allows the use of either of the two equations for subsequent statistical procedures.
The mean basal area is close to the value calculated by Del Angel-Mobarak (2012),
which is 4.74 m? hal; this result is similar to the one obtained by the present study
—5.92 m? ha'— for the aforementioned vegetation type. The mean value observed

for the biomass in equations 1 and 2 ranged between 10.71 and 13.27 Mg ha™.

The forest parameters (basal area, volume and biomass) showed a strong negative
correlation with the spectral bands and a positive correlation with the vegetation
indices. However, the highest correlation was with the mid-infrared (MIR) spectral
band, with a value for R? ranging between -0.69 and -0.77, while the R? values for
the normalized difference vegetation index (NDVI) ranged between 0.56 and 0.61,

with a significance level of 5 % (Table 3).
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Table 3. Pearson’s correlation coefficients between spectral variables and the forest

variables basal area (BA), volume (V) and biomass (B).

Variables Statistic BA Vi V2 Bl B2
R2 -0.46  -0.42 -0.38 -0.46 -0.43
Band 1 (blue)
0=5% 0.0779 0.1123 0.1609 0.0819 0.1065
R2 -0.71  -0.66 -0.66 -0.72 -0.72
Band 2 (green)
a=5% 0.0028 0.0068 0.0067 0.0024 0.0023
R2 -0.70  -0.68 -0.70 -0.72 -0.73
Band 3 (red)
0=5% 0.003 0.0051 0.0033 0.0022 0.0016
Band 4 (near- R2 -0.41  -0.38 -0.38 -0.41 -0.41
infrared a=50% 0.1263 0.1514 0.162 0.1198 0.1262
Banda 5 (mid- RZ -0.72  -0.69 -0.74 -0.74 -0.77
infrared) a=5% 0.0002 0.0002 0.0016 0.0014 0.0006
Banda 7 ( mid- R2 -0.64  -0.61 -0.67 -0.66 -0.70
infrared) a=5% 0.0101 0.0144 0.0057 0.0068 0.0034
R2 0.58 0.56 0.58 0.59 0.61
NDVI
0=55% 0.0225 0.0293 0.0211 0.0187 0.0152
R2 0.58 0.53 0.54 0.59 0.59
GNDVI
a=55% 0.0226 0.0379 0.0344 0.0204 0.0188
R2 -0.20 -0.18 -0.17 -0.20 -0.19
DVI
a=55% 0.4666 0.5013 0.535 0.4616 0.4821

BA:

Basal area ha!; V; = Volume ha*; Bj = Biomass ha
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The mid-infrared (MIR) band was selected as independent variable, as it shows the
highest correlation with the forest variables, which made it possible to have the best
adjustment statistics in the assessed models. The negative correlation of the mid-
infrared band is inversely proportional to forest density, which may be ascribed to
the reduction of the albedo in high-density areas (Aguirre et al., 2007; Aguirre et
al., 2009). Therefore, a significant increase in the MIR values suggests an increased
amount of clorophyll and, consequently, an increase in basal area, volume and
biomass. The high associated correlations between the forest parameters (BA, V
and B) and the MIR band made it possible to obtain more statistically consistent
regression models.

Linear regression models

The spatial distribution of the forest parameters (BA, V and B) of tropical forests is
very complex; the topography is one of the main factors affecting the heterogeneity,
which makes it difficult to develop an accurate model. However, in this study it was
possible to obtain the most statistically consistent regression model for the estimation
of the forest variables, which was built using the PROC MODEL procedure of the
SAS/ETS™ statistical software package (SAS, 2008).

Table 4 shows the values of the fit statistics and the parameter estimators of the best
regression models evaluated for the estimation of the forest variables. The intercept
of the model was statistically different from zero (8o0), and the rate of change in the
slope of the mid-infrared variable (1) contributed to estimate the variables BA, V and
B, as the probabilities associated to the parameters are highly significant in the

hypothesis test, at a significance level under 5 % (0=0.05).
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Table 4. Fit and statistical values of the assessed models.

Model Equation RZadj RMSE P '] et 00
ao 86.95 20.40 0.0008
1 ABl S 0{0 + 0(1X1 0.52 3.30
a1 -763.71 164.50 0.0004

Bo 452.51 108.12 0.0009

2 Vl = ﬁo + ,31X1 0.47 17.92
B1 -3946.44 871.68 0.0005
Bo 363.78 81.95 0.0006
3 Vz = ﬁo + ﬁlxl 0.54 13.18
B1 -3184.22 660.66 0.0003
Yo 202.45 44.48 0.0005
4 Bl =%Yo + )/1X1 0.55 7.25
Y1 -1777.03 358.64 0.0002
Yo 174.68 37.88 0.0004
5 BZ = %Yo + ]/1X1 0.60 5.91

V1 -1538.43 305.45 0.0002

BA: = Basal area ha?; Vi = Volume ha!; Bi = Biomass hat; X1 = Mid-infrared; W =
Value of the parameters; €' = Standard error of the parameters, co= Significance

level of the parameters.

The five models presented good statistical bases to accurately estimate the forest
variables (BA, V and B), which are based on the MIR band, the auxiliary variable
(independent variables). However, the prominent models that best describe the
biological behavior of the basal area, volume and biomass were models 1, 3 and 5,
which obtained the desirable statistics, the highest value for the adjusted
determination coefficient (R%aj = 0.52, 0.54 y 0.60 for BA, V and B, respectively),
and the lowest value for the root of the mean square error (RMSE =3.30, 13.18 and
5.91 for BA, V and B, respectively). These results differ from those obtained by other

authors; for example, Muioz et al. (2014) register higher errors in BA and V, with
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RMSE = 6.70 m? hat and 41.45 m® ha! in the temperate forest, based on Spot 4 and
5 images. Aguirre et al. (2007) estimated the BA, V and B using Spot 5 images in
Pinus patula Schiede ex Schitdl. & Cham. forests under management, and calculated
an RSME of 11.87 m? hal, 96.81 m3 ha! and 52.56, Mg ha?, for BA, V and B,
respectively. For their part, Hall et al. (2006) estimated an RMSE of 33.7 Mg ha* and
74.7 m3 hat for BA and V, with the support of Landsat ETM imaging. The results
obtained by other authors differ from those of the present study, which may be due
to the fact that tropical forests, particularly the low deciduous forest, have lower

values for BA, V and B than temperate forests.

Figures 2, 3 and 4 correspond to the spatial distribution maps for the basal area
(m? hal), volume (m3 ha') and biomass (Mg ha') of the study area, respectively.
The parts in white indicate the non-forest lands (areas without forest cover). Given
the range of values for each variable, certain ranges pertain to a one-pixel surface
area (900 m?); therefore, their color is imperceptible, and only those areas where the

values in which the variable is most abundant are apparent.
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Figure 2. Spatial distribution of the basal area estimated with model 1.
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Figure 3. Spatial distribution of the volume estimated with model 3.
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Figure 4. Spatial distribution of the biomass estimated with model 5.
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Estimation of the forest parameters in terms of total inventories

Table 5 shows the estimations of the total inventory for basal area, volume and
biomass obtained using the traditional method (in-field inventory) and the remote
sensing method (regression estimators). The mid-infrared (MIR) band had the highest
values for correlation with the forest parameters: BA = -0.72, V> = -0.74 and
B = -0.77. Therefore, the regression estimators were built based on the MIR band for
the calculation of the BA, V and B. The regression estimator showed the highest
precision (permissible error under 10 %) compared to the simple random sampling.
Statistically, the two methods produced similar results, although the regression
estimator produces more conservative estimations and builds less ample confidence
intervals in respect to the total inventory of the SRS (the most optimistic inventory).
Table 5. Comparison between the estimations of the variables (BA m? ha,

V m? ha! and B Mg ha') based on the traditional and the remote sensing
(regression) inventories.

Inventory Method Estimators BA m?2 V2 m3 B> Mg
Inventory 6 387.54 23 665.11 11 567.92
Traditional SRS IC+95 % 6 453.52 23 935.51 11 697.57
1C-95 % 6 321.56 23 394.70 11 438.28
Inventory 6 149.63 22 668.06 11 066.06
Remote
) RE IC+95 % 6 196.81 22 856.46 11 150.58
perception
1C-95 % 6 102.45 22 479.66 10 981.53

BA:1 = Basal area; V1 = Volume; B> = Biomass; SRS = Simple random sampling;

RE = Regression estimator; Cl+ = Confidence intervals at a level of reliability of

95 %.
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The assessment of the forest resources with the support of remote sensing showed
more conservative and more accurate results than the traditional inventory (SRS);
this allows the forest managers to make better decisions for the sustainable
management of the forests and enables them to be integrated in the future into pay-
per-service environmental projects through the capture of carbon (Hall et al., 2006:
Aguirre et al., 2007).

Conclusions

Five regression models were generated —one for BA, two for V, and two for B—, and
the mid-infrared band of the spectral data and vegetation indexes from Landsat 7

ETM+ images were used as auxiliary variables.

The combinations of data derived from a forest inventory (basal area, volume and
biomass) and the satellite image variables (spectral bands and vegetation indices)
through linear regression models produce spatial distribution maps for each of the

forest parameters.
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