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Abstract: 

In the context of the mechanisms of climatic change mitigation, constant forest 

monitoring is important because forests provide crucial information. The estimation 

of forest stand attributes based on satellite imagery data combined with forest 

inventory data allows producing accurate information on forest structure, at a relative 

and accessible cost. However, there is still a need to use models that enable the 

construction of a valid relationship between remote sensing and field data. Therefore, 

this study aims to estimate forest attributes such as basal area (AB), volume (V) and 

aboveground biomass (B) by analyzing and using the relationship between spectral 

information, from Landsat ETM+ imagery, and tree measurements. Data from plots 

collected in 2010 by the National Forest and Soils Inventory (INFyS) were used as 

primary source of information. Results suggest that the best models to estimate AB, 

V and B were those that used the near infrared band (band 5) as the independent 

variable. Results also indicated that adjusted regression models shown statistical 

bases to estimate AB, V and B in a precise manner. All regression models were highly 

significant (5 %) with determination coefficients (R2 adj) higher than 0.47. 

 

Key words: aboveground biomass, forest structure, Landsat, regression models, 

forest parameters, remote sensors. 
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Introduction 

 

Forest ecosystems capture, store and release carbon as a result of photosynthetic 

and respiratory processes and dry matter degradation (Razo et al., 2013), which 

contributes directly to the abatement of the effects of climate change carbon 

sequestration in their biomass. Therefore, within the context of climate change 

abatement, forest monitoring is important because forests provide crucial information 

on the effects of the process (Sinha et al., 2015). 

Aboveground biomass and other forest parameters (e.g. volume, basal area, carbon 

and leaf area index) are estimated using the direct and indirect methods. The former 

consists of a destructive sampling; however, it is very slow and costly, which makes 

its large scale application complicated. The latter is based on: i) statistical techniques 

(allometric equations and biomass expansion factor) (Ayala et al., 2002) relating 

variables that can be easily measured (normal diameter and total height) in forest 

inventories with variables that are difficult to measure (e.g. volume and biomass) 

(Návar, 2009; Aquino et al., 2015); and ii) models obtained from combinations of 

data derived from the forest inventory and from remote sensing (Labrecque et al., 

2006; Hall et al., 2006). 

The enhancement of the capacities of the various types of remote sensors provides 

the opportunity to develop more efficient analysis techniques (Torres et al., 2016), 

which in turn favors the obtainment of more consistent results in the assessment and 

monitoring of forest resources. Remote sensors have comparative advantages over 

the conventional inventory: optimization in time and financial supports, access to 

inaccessible areas, and the execution of inventories in large forest surface areas (Hou 

et al. 2011; Sinha et al., 2015: Timothy et al., 2016). For this reason, the estimation 

of the forest biomass based on this technology is of great interest to achieve a 
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sustainable forest management and to generate environmental policies (Latifi et al., 

2015). 

The use of satellite imaging as auxiliary variables has made it possible to monitor the 

forest resources constantly and to accurately estimate various attributes of this kind 

(Dong et al., 2003; Valdez et al., 2006; Muñoz et al., 2014). However, the relationship 

between data from remote sensing and field data must be further explored in order 

to estimate the forest parameters. The objective of the study was to develop 

regression models for the estimation of the basal area (BA), volume (V) and biomass 

(B) with auxiliary variables of spectral data and vegetation indices obtained through 

Landsat 7 ETM+ imaging. 

 

Materials and Methods 

Study area 

 

The study area is located in the southeastern end of the State of Mexico and comprises 

a surface area of 409 936 ha; between the coordinates 19°15ꞌ00ꞌꞌ N and 100°37ꞌ00ꞌꞌ 

W, and 18°22ꞌ00ꞌꞌ N and 99°45ꞌ00ꞌꞌ W (Figure 1), within the hydrological region of 

the Balsas river. Its climates are semiwarm ((A)C(w) and A(C)w) and warm, with a 

mean annual temperature of 17.3 °C, and a mean annual precipitation of 939 mm 

(García-Conabio, 1998). 

The main mighty rivers in the area are Temascaltepec, Sultepec, Topilar, San Pedro, 

Amacuzac and Cutzamala (GEM, 2007). As for the orography, the region includes the 

Sierra Temascaltepec mountain systems, whose morphology is rough and uneven, 

with narrow valleys, gullies and ravines (GEM, 2007). 

The prevalent geology consists of carbonated and vulcanosedimentary rocks of the 

Higher Jurassic and lower Cretaceous periods, vulcanosedimentary rocks of the 
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Higher Triassic and Lower Jurassic, and intrusive felsic rocks of the Tertiary period 

(GEM, 2007). 

The soils are mainly Regosols, Cambisols, Andosols and Phaeozems (Inifap, 1995). 

The vegetation corresponds to a low deciduous forest; there are also Quercus spp. 

and Pinus spp. forests, induced grasslands and rainfed agriculture (Inegi, 2013). 

 

.  

Figure 1. Location of the study area in the State of Mexico. 

 

Field data 
 

17 clusters of the 2010 Forest and Soils Inventory of the State of Mexico (Probosque, 

2010) corresponding to low deciduous forests of the southern extreme of the entity 

(Figure 1) were used. Before calculating the variables, the database was cleared, and 

the atypical values for the normal diameter (D) and total height (H) were deleted.  

Each cluster consists of four rectangular sampling sites with a surface area of 400 m2 

(Conafor, 2011). Information regarding the dasometric variables is available for each 
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sampling site. The estimations of the variables BA (m2), V (m3) and B (kg) were 

registered at tree level. The BA was estimated based on the 0.7854*DN2 structure, 

in which D is the normal diameter and 0.7854 is the constant resulting from the π/4 

ratio. 

The volume was estimated using two equations developed for the low deciduous 

forest: 1) the equation of the National Forest and Soils Inventory (1973), and 2) the 

equation derived from a manifestation of environmental impact in the regional 

modality of the advanced management programs for the forests of eight ejidos in the 

state of Morelos (Sinat, 2007) (Table 1). The general equation designed by Torres 

and Guevara (2002) was used to estimate the total biomass in the low forest (Table 

2). 

 

Table 1. Equation to calculate the volume. 

Equation Model β0 β1 β2 

1 
V =  𝑒𝑒𝛽𝛽0  𝐷𝐷𝛽𝛽1  𝐻𝐻𝛽𝛽2 

-0.77785 1.872175 0.815238 

2 -9.3156 2.38434 0.1666 

 

Where:  

V = Total volume (kg)  

βi = Value of the parameters 

 

Table 2. Total biomass equation for the low deciduous forest. 

Equation Model β0 β1 

3 𝐵𝐵 = 𝛽𝛽0 + 𝛽𝛽1 × (𝑉𝑉) 12.225 313.036  

 

1) 

2) 
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Where: 

B = Total biomass (kg) 

βi = Value of the parameters 

 

For each of the forest variables (BA, V and B), the addition was calculated per site 

and per cluster. In order to extrapolate the values per hectare, the ratio of means 

method was applied to each variable (Šmelko and Merganič, 2008): 

 

Ř = 𝑌𝑌
𝑋𝑋

=  Ʃ𝑖𝑖=1
𝑛𝑛 𝑌𝑌𝑖𝑖
Ʃ𝑖𝑖=1
𝑛𝑛 𝑋𝑋𝑖𝑖

                                3)’766 Where: 

Ř = Variable of interest expressed in has 

Yi = Total value of the variable in all the 400 m2 sites 

Xi = Total sampled surface area in i sites. 

 

Spectral variables 
 

A Landsat 7 ETM+ was obtained through the United States Geological Survey (USGS, 

2015), with a spatial resolution of 30 x 30 m (900 m2), at LT 1 and corrected by the 

same processing system of the same American service (Landsat Ecosystem 

Disturbance Adaptive Processing System: LEDAPS), which carries out geometric and 

radiometric corrections (Masek et al., 2006). The date on which the image was taken 

was July 30, 2010. The mean values of the pixels located within a 1 ha mask and 

corresponding to the size of a duly georeferenced sampling cluster were estimated 

(Hall et al., 2006; Muñoz et al., 2014). Three vegetation indexes (VI) were estimated 

using mathematical transformations, as these reflect their status and allow modeling 

the forest parameters accurately (ERDAS, 2011; Wijaya et al., 2010; Poulain et al., 

2010; Muñoz et al., 2014). 
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𝑁𝑁𝐷𝐷𝑉𝑉𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁

                               4) 

 

𝐺𝐺𝑁𝑁𝐷𝐷𝑉𝑉𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁+𝐺𝐺

                          5) 

 

𝐷𝐷𝑉𝑉𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁                                      6)  

 

Where:  

NDVI = Normalized difference vegetation index 

GNDVI = Green normalized vegetation index 

DVI = Difference vegetation index 

NIR = Near-infrared band 

R = Red band 

G = Green band 

 

Analysis of the correlation between forest parameters and 
spectral data 

 

 

A Pearson’s correlation analysis was carried out to assess the correlation coefficient, 

the R2 and the level of significance to a rejection value under (α = 5 %) in order to 

determine the degree of association between the parameters BA, V and B (dependent 

variable and/or response) and each of the spectral bands and the vegetation index 

(independent or predictive variable). 
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Linear regression adjustment models 

 

The variables that showed the highest correlation were used to build the linear 

regression models in order to estimate the BA, V and B. The models were fitted using 

the minimum ordinary squares (MOS) method with the SAS/ETSTM statistical package 

(SAS, 2008). The MOS method provides the best unbiased linear estimators. 

The selected models were evaluated based on the accuracy and numeric precision of 

the adjustment statistics: determination coefficient (R2adj), root of the mean square 

error (RMSE) and high significance in the parameters (α = 0.05 %). The highest and 

lowest R2adj values corresponded, respectively, to a greater precision and accuracy of 

a model for estimating the basal area, volume and biomass. The best linear regression 

models were used to map and obtain the spatial distribution of the forest parameters 

of interest for each pixel in the image of the study area. 

 

Estimation of the forest parameters in terms of total inventories 
 

 

In order to estimate the total inventory of the forest parameters in the study area, 

simple random sampling (traditional inventory) and the regression estimator 

(alternative inventory) were used. The latter includes an auxiliary measure (spectral 

bands and vegetation indices) that is highly correlated with the forest parameters 

(Valdez et al., 2006; Ortiz et al., 2015). Therefore, the spectral variables and 

vegetation indices with the highest degree of correlation with the forest parameters 

were handled as auxiliary variables in the calculation of the regression estimators as 

an alternative for updating the total inventory (Muñoz et al., 2014; Ortiz et al., 2015). 

For the calculations of the total inventory, a surface area of 1 000 has was used; this 
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made it possible to observe, compare and determine which method yielded the best 

estimation in terms of the total inventory (traditional inventory vs alternative 

inventory using remote sensing). 

 

Results and Discussion 

 

Analysis of the correlation between forest parameters and 
spectral data 

 

The average volume calculated for the low deciduous forest was 30.26 and            

22.08 m3 ha-1, estimated with the V1 and V2 equations, respectively. Among the most 

contrasting results are those obtained by Probosque (2010), Del Ángel-Mobarak 

(2012) and Conafor (2012), with figures of 35.01, 29.58 and 23.72 m3 ha-1, 

respectively, for the national volume in the low deciduous forest. Thus, the mean 

volume in this study is within the national range registered by other studies, which 

allows the use of either of the two equations for subsequent statistical procedures. 

The mean basal area is close to the value calculated by Del Ángel-Mobarak (2012), 

which is 4.74 m2 ha-1; this result is similar to the one obtained by the present study 

––5.92 m2 ha-1–– for the aforementioned vegetation type. The mean value observed 

for the biomass in equations 1 and 2 ranged between 10.71 and 13.27 Mg ha-1. 

The forest parameters (basal area, volume and biomass) showed a strong negative 

correlation with the spectral bands and a positive correlation with the vegetation 

indices. However, the highest correlation was with the mid-infrared (MIR) spectral 

band, with a value for R2 ranging between -0.69 and -0.77, while the R2 values for 

the normalized difference vegetation index (NDVI) ranged between 0.56 and 0.61, 

with a significance level of 5 % (Table 3). 
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Table 3. Pearson’s correlation coefficients between spectral variables and the forest 

variables basal area (BA), volume (V) and biomass (B). 

 
BA = Basal area ha-1; Vi = Volume ha-1; Bi = Biomass ha-1 
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The mid-infrared (MIR) band was selected as independent variable, as it shows the 
highest correlation with the forest variables, which made it possible to have the best 
adjustment statistics in the assessed models. The negative correlation of the mid-
infrared band is inversely proportional to forest density, which may be ascribed to 
the reduction of the albedo in high-density areas (Aguirre et al., 2007; Aguirre et 
al., 2009). Therefore, a significant increase in the MIR values suggests an increased 
amount of clorophyll and, consequently, an increase in basal area, volume and 
biomass. The high associated correlations between the forest parameters (BA, V 
and B) and the MIR band made it possible to obtain more statistically consistent 
regression models. 

 

Linear regression models 

 

The spatial distribution of the forest parameters (BA, V and B) of tropical forests is 

very complex; the topography is one of the main factors affecting the heterogeneity, 

which makes it difficult to develop an accurate model. However, in this study it was 

possible to obtain the most statistically consistent regression model for the estimation 

of the forest variables, which was built using the PROC MODEL procedure of the 

SAS/ETSTM statistical software package (SAS, 2008). 

Table 4 shows the values of the fit statistics and the parameter estimators of the best 

regression models evaluated for the estimation of the forest variables. The intercept 

of the model was statistically different from zero (β0), and the rate of change in the 

slope of the mid-infrared variable (β1) contributed to estimate the variables BA, V and 

B, as the probabilities associated to the parameters are highly significant in the 

hypothesis test, at a significance level under 5 % (α=0.05). 
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Table 4. Fit and statistical values of the assessed models. 

Model Equation R2adj RMSE ρ Ψ ε† ∞ 

1 𝐴𝐴𝐵𝐵1 =  𝛼𝛼0 + 𝛼𝛼1𝑋𝑋1 0.52 3.30 
α0 86.95 20.40 0.0008 

α1 -763.71 164.50 0.0004 

2 𝑉𝑉1 =  𝛽𝛽0 +  𝛽𝛽1𝑋𝑋1 0.47 17.92 
β0 452.51 108.12 0.0009 

β1 -3946.44 871.68 0.0005 

3 𝑉𝑉2 =  𝛽𝛽0 +  𝛽𝛽1𝑋𝑋1 0.54 13.18 
β0 363.78 81.95 0.0006 

β1 -3184.22 660.66 0.0003 

4 𝐵𝐵1 = 𝛾𝛾0 + 𝛾𝛾1𝑋𝑋1 0.55 7.25 
𝛾𝛾0 202.45 44.48 0.0005 

𝛾𝛾1 -1777.03 358.64 0.0002 

5 𝐵𝐵2 = 𝛾𝛾0 + 𝛾𝛾1𝑋𝑋1 0.60 5.91 
𝛾𝛾0 174.68 37.88 0.0004 

𝛾𝛾1 -1538.43 305.45 0.0002 

BA1 = Basal area ha-1; Vi = Volume ha-1; Bi = Biomass ha-1; X1 = Mid-infrared; Ψ = 

Value of the parameters; ε† = Standard error of the parameters, ∞= Significance 

level of the parameters. 

The five models presented good statistical bases to accurately estimate the forest 

variables (BA, V and B), which are based on the MIR band, the auxiliary variable 

(independent variables). However, the prominent models that best describe the 

biological behavior of the basal area, volume and biomass were models 1, 3 and 5, 

which obtained the desirable statistics, the highest value for the adjusted 

determination coefficient (R2adj = 0.52, 0.54 y 0.60 for BA, V and B, respectively), 

and the lowest value for the root of the mean square error (RMSE =3.30, 13.18 and 

5.91 for BA, V and B, respectively). These results differ from those obtained by other 

authors; for example, Muñoz et al. (2014) register higher errors in BA and V, with 
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RMSE = 6.70 m2 ha-1 and 41.45 m3 ha-1 in the temperate forest, based on Spot 4 and 

5 images. Aguirre et al. (2007) estimated the BA, V and B using Spot 5 images in 

Pinus patula Schiede ex Schltdl. & Cham. forests under management, and calculated 

an RSME of 11.87 m2 ha-1, 96.81 m3 ha-1 and 52.56, Mg ha-1, for BA, V and B, 

respectively. For their part, Hall et al. (2006) estimated an RMSE of 33.7 Mg ha-1 and 

74.7 m3 ha-1 for BA and V, with the support of Landsat ETM imaging. The results 

obtained by other authors differ from those of the present study, which may be due 

to the fact that tropical forests, particularly the low deciduous forest, have lower 

values for BA, V and B than temperate forests. 

Figures 2, 3 and 4 correspond to the spatial distribution maps for the basal area      

(m2 ha-1), volume (m3 ha-1) and biomass (Mg ha-1) of the study area, respectively. 

The parts in white indicate the non-forest lands (areas without forest cover). Given 

the range of values for each variable, certain ranges pertain to a one-pixel surface 

area (900 m2); therefore, their color is imperceptible, and only those areas where the 

values in which the variable is most abundant are apparent. 

 

 

Figure 2. Spatial distribution of the basal area estimated with model 1. 
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Figure 3. Spatial distribution of the volume estimated with model 3. 

 

 

Figure 4. Spatial distribution of the biomass estimated with model 5. 

 

 



Revista Mexicana de Ciencias Forestales 
Vol. 8 (41)   

 
 

 
 

 

Estimation of the forest parameters in terms of total inventories 

 

Table 5 shows the estimations of the total inventory for basal area, volume and 

biomass obtained using the traditional method (in-field inventory) and the remote 

sensing method (regression estimators). The mid-infrared (MIR) band had the highest 

values for correlation with the forest parameters: BA = -0.72, V2 = -0.74 and                

B = -0.77. Therefore, the regression estimators were built based on the MIR band for 

the calculation of the BA, V and B. The regression estimator showed the highest 

precision (permissible error under 10 %) compared to the simple random sampling. 

Statistically, the two methods produced similar results, although the regression 

estimator produces more conservative estimations and builds less ample confidence 

intervals in respect to the total inventory of the SRS (the most optimistic inventory). 

Table 5. Comparison between the estimations of the variables (BA m2 ha-1,           
V m2 ha-1 and B Mg ha-1) based on the traditional and the remote sensing 

(regression) inventories. 

Inventory  Method Estimators BA m2 V2 m3 B2 Mg 

Traditional  SRS 

Inventory 6 387.54 23 665.11 11 567.92 

IC+95 % 6 453.52 23 935.51 11 697.57 

IC-95 % 6 321.56 23 394.70 11 438.28 

Remote 

perception  
RE 

Inventory 6 149.63 22 668.06 11 066.06 

IC+95 % 6 196.81 22 856.46 11 150.58 

IC-95 % 6 102.45 22 479.66 10 981.53 

BA1 = Basal area; V1 = Volume; B2 = Biomass; SRS = Simple random sampling;   

RE = Regression estimator; CI± = Confidence intervals at a level of reliability of   

95 %. 
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The assessment of the forest resources with the support of remote sensing showed 

more conservative and more accurate results than the traditional inventory (SRS); 

this allows the forest managers to make better decisions for the sustainable 

management of the forests and enables them to be integrated in the future into pay-

per-service environmental projects through the capture of carbon (Hall et al., 2006: 

Aguirre et al., 2007). 

 

Conclusions 

 

Five regression models were generated ─one for BA, two for V, and two for B─, and 

the mid-infrared band of the spectral data and vegetation indexes from Landsat 7 

ETM+ images were used as auxiliary variables.  

The combinations of data derived from a forest inventory (basal area, volume and 

biomass) and the satellite image variables (spectral bands and vegetation indices) 

through linear regression models produce spatial distribution maps for each of the 

forest parameters. 
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