Potencial del uso de bioestimulantes en el manejo del arbolado urbano
DOI:
https://doi.org/10.29298/rmcf.v16i91.1575Palabras clave:
arboricultura, estrés, micorrizas, paclobutrazol, vitalidad, dasonomia urbanaResumen
Los bioestimulantes son sustancias que, sin ser nutrientes, pesticidas o mejoradores del suelo, promueven el crecimiento de las plantas cuando se aplican en pequeñas cantidades. Se agrupan en cuatro categorías: ácidos, microorganismos, compuestos bioactivos de origen vegetal y otros. Su aplicación en arbolado urbano busca mejorar la vitalidad y resistencia ante condiciones de estrés. Entre los bioestimulantes empleados destacan extractos de algas marinas, ácidos húmicos, carbohidratos no estructurales, paclobutrazol y microorganismos benéficos. Estos han mostrado eficacia frente al estrés por sequía, salinidad o hídrico, además de fortalecer el sistema inmunitario de los árboles. Productos comerciales a base de ácidos húmicos han mejorado la supervivencia, el vigor de raíces y brotes, y la vitalidad general, evidenciado por resultados en el aumento en la fluorescencia de clorofila. Por otro lado, la aplicación de almidón y glucosa eleva los niveles de almidón en el tronco, lo cual es deseable ya que su reducción se asocia con la muerte en condiciones de estrés severo. Entre los bioestimulantes, los hongos micorrízicos han sido los más estudiados en el arbolado urbano, ya que proporcionan beneficios consistentes en variables de crecimiento y adaptación, incluso a nivel molecular. Finalmente, aunque gran parte del conocimiento sobre bioestimulantes proviene de la agricultura, su potencial en arboricultura es alto. Este trabajo presenta una revisión sobre su uso en condiciones de campo y ambientes semicontrolados; así como, las limitaciones que enfrenta su aplicación en el manejo del arbolado urbano.
Descargas
Citas
Aalipour, H., Nikbakht, A., Etemadi, N., Rejali, F., & Soleimani, M. (2020). Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Scientia Horticulturae, 261, Article 108923. https://doi.org/10.1016/j.scienta.2019.108923 DOI: https://doi.org/10.1016/j.scienta.2019.108923
Abaurre, G. W., Saggin Jr., O. J., & de Faria, S. M. (2021). Interaction of substrates and inoculants for Samanea saman (Jacq.) Merr seedling production. Floresta e Ambiente, 28(4), Article e20210046. https://doi.org/10.1590/2179-8087-FLORAM-2021-0046 DOI: https://doi.org/10.1590/2179-8087-floram-2021-0046
Alam, S., Azim, A., Al-Mamun, A., Ahammed, S., Ahmed, S., Zaman, S. M. S., Sultana, S., Parvez, M., Nasrin, S., & Halder, M. (2025). The mycorrhiza fungi colonization and relationship with rhizosphere soil properties in the urban and suburban area of Southwestern Bangladesh. Total Environment Microbiology, 1(1), Article 100003. https://doi.org/10.1016/j.temicr.2025.100003 DOI: https://doi.org/10.1016/j.temicr.2025.100003
Ali, A., Ghani, M. I., Ding, H., Fan, Y., Cheng, Z., & Iqbal, M. (2019). Co-amended synergistic interactions between arbuscular mycorrhizal fungi and the organic substrate-induced cucumber yield and fruit quality associated with the regulation of the AM-fungal community structure under anthropogenic cultivated soil. International Journal of Molecular Sciences, 20(7), Article 1539. https://doi.org/10.3390/ijms20071539 DOI: https://doi.org/10.3390/ijms20071539
Báez-Pérez, A. L., Lindig-Cisneros, R., & Villegas, J. (2017). Survival and growth of nursery inoculated Fraxinus uhdei in acrisol gullies. Madera y Bosques, 23(3), 7-14. https://doi.org/10.21829/myb.2017.2331418 DOI: https://doi.org/10.21829/myb.2017.2331418
Banks, J. M., & Percival, G. C. (2014). Failure of foliar-applied biostimulants to enhance drought and salt tolerance in urban trees. Arboricolture & Urban Forestry, 40(2), 78-83. https://doi.org/10.48044/jauf.2014.009 DOI: https://doi.org/10.48044/jauf.2014.009
Barnes, S., & Percival, G. C. (2006). Influence of biostimulants and water-retaining polymer root dips on survival and growth of newly transplanted bare-rooted silver birch and rowan. Journal of Environmental Horticulture, 24(3), 173-179. https://doi.org/10.24266/0738-2898-24.3.173 DOI: https://doi.org/10.24266/0738-2898-24.3.173
Bizjak, T., Sellstedt, A., Gratz, R., & Nordin, A. (2023). Presence and activity of nitrogen-fixing bacteria in Scots pine needles in a boreal forest: a nitrogen-addition experiment. Tree Physiology, 43(8), 1354-1364. https://doi.org/10.1093/treephys/tpad048 DOI: https://doi.org/10.1093/treephys/tpad048
Calvo-Polanco, M., Armada, E., Zamarreño, A. M., García-Mina, J. M., & Aroca, R. (2019). Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor. Journal of Experimental Botany, 70(21), 6437-6446. https://doi.org/10.1093/jxb/erz389 DOI: https://doi.org/10.1093/jxb/erz389
Chen, Y., De Nobili, M., & Avaid, T. (2004). Stimulatory effect of humic substances on plant growth. In F. Magdoff & R. R. Weil (Eds.), Soil Organic Matter in Sustainable Agriculture (pp. 103-129). CRS Press. https://hkst.cqucas.ac.cn/Files/sitefile_10/Image/files/%E7%94%9F%E6%80%81%E5%AD%A6%E7%9B%B8%E5%85%B3%E8%91%97%E4%BD%9C%20Soil%20Organic%20Matter%20in%20Sustainable%20Agriculture%20by%20Magdoff,%20Fred%20(z-lib.org).pdf?03115517 DOI: https://doi.org/10.1201/9780203496374.ch4
Cinantya, A., Manea, A., & Leishman, M. R. (2024). Biostimulants do not affect the performance of urban plant species grown under drought stress. Urban Ecosystems, 27, 1251-1261. https://doi.org/10.1007/s11252-024-01521-5 DOI: https://doi.org/10.1007/s11252-024-01521-5
de Sousa-Oliveira, K. Â., Coelho-Lopes, P. R., Cavalcante, Í., Cunha-Filho, J., dos Santos-Silva, L., Valença-Pereira, E. C., & Teixeira-Lobo da Silva, J. (2022). Impact of paclobutrazol on gibberellin-like substances and soluble carbohydrates in pear trees grown in tropical semiarid. Revista de la Facultad de Ciencias Agrarias UNCuyo, 54(1), 46-56. https://doi.org/10.48162/rev.39.064 DOI: https://doi.org/10.48162/rev.39.064
Derkzen, M. L., van Teeffelen, A. J. A., & Verburg, P. H. (2015). Quantifying urban ecosystem services based on high-resolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of Applied Ecology, 52(4), 1020-1032. https://doi.org/10.1111/1365-2664.12469 DOI: https://doi.org/10.1111/1365-2664.12469
Dong, F., Wang, Y., & Tang, M. (2021). Effects of Laccaria bicolor on gene expression of Populus trichocarpa root under poplar canker stress. Journal of Fungi, 7(12), Article 1024. https://doi.org/10.3390/jof7121024 DOI: https://doi.org/10.3390/jof7121024
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021
Fini, A., Ferrini, F., Seri, M., Amoroso, G., Piatti, R., Robbiani, E., & Frangi, P. (2016). Effect of fertilization and mycorrhizal inoculation in the nursery on post-transplant growth and physiology in three ornamental woody species. Acta Horticulturae, (1108), 47-54. https://www.actahort.org/members/showpdf?booknrarnr=1108_6 DOI: https://doi.org/10.17660/ActaHortic.2016.1108.6
Graziani, G., Cirillo, A., Giannini, P., Conti, S., El-Nakhel, C., Rouphael, Y., Ritieni, A., & Di Vaio, C. (2022). Biostimulants improve plant growth and bioactive compounds of young olive trees under abiotic stress conditions. Agriculture, 12(2), Article 227. https://doi.org/10.3390/agriculture12020227 DOI: https://doi.org/10.3390/agriculture12020227
Hartmann, H., & Trumbore, S. (2016). Understanding the roles of nonstructural carbohydrates in forest trees–from what we can measure to what we want to know. New Phytologist, 211(2), 386-403. https://doi.org/10.1111/nph.13955 DOI: https://doi.org/10.1111/nph.13955
Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T. I., Masud, A. A. C., & Fotopoulos, V. (2021). Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells, 10(10), 2537. https://doi.org/10.3390/cells10102537 DOI: https://doi.org/10.3390/cells10102537
Jayaraman, J., & Ali, N. (2015). Use of seaweed extracts for disease management of vegetable crops. In S. Ganesan, K. Vadivel & J. Jayaraman (Eds.), Sustainable crop disease management using natural products (pp. 160-183). CAB International. https://doi.org/10.1079/9781780643236.0160 DOI: https://doi.org/10.1079/9781780643236.0160
Jiang, D., Lin, R., Tan, M., Yan, J., & Yan, S. (2022). The mycorrhizal-induced growth promotion and insect resistance reduction in Populus alba×P. berolinensis seedlings: a multi-omics study. Tree Physiology, 42(5), 1059-1069. https://doi.org/10.1093/treephys/tpab155 DOI: https://doi.org/10.1093/treephys/tpab155
Jiang, X., Wang, Y., Xie, H., Li, R., Wei, J., & Liu, Y. (2019). Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants. Environmental Science and Pollution Research, 26, 27385-27395. https://doi.org/10.1007/s11356-019-05947-9 DOI: https://doi.org/10.1007/s11356-019-05947-9
Joly, P., Calteau, A., Wauquier, A., Dumas, R., Beuvin, M., Vallenet, D., Crovadore, J., Cochard, B., Lefort, F., & Berthon, J.-Y. (2021). From strain characterization to field authorization: Highlights on Bacillus velezensis strain B25 beneficial properties for plants and its activities on phytopathogenic fungi. Microorganisms, 9(9), 1924. https://doi.org/10.3390/microorganisms9091924 DOI: https://doi.org/10.3390/microorganisms9091924
Kapłan, M., Lenart, A., Klimek, K., Borowy, A., Wrona, D., & Lipa, T. (2021). Assessment of the possibilities of using cross-linked polyacrylamide (Agro Hydrogel) and preparations with biostimulation in building the quality potential of newly planted apple trees. Agronomy, 11(1), 125. https://doi.org/10.3390/agronomy11010125 DOI: https://doi.org/10.3390/agronomy11010125
Leite, J. M., Pitumpe-Arachchige, P. S., Ciampitti, I. A., Hettiarachchi, G. M., Maurmann, L., Trivelin, P. C. O., Vara-Prasad, P. V., & Sunoj, S. V. J. (2020). Co-addition of humic substances and humic acids with urea enhances foliar nitrogen use efficiency in sugarcane (Saccharum officinarum L.). Heliyon, 6(10), Article e05100. https://doi.org/10.1016/j.heliyon.2020.e05100 DOI: https://doi.org/10.1016/j.heliyon.2020.e05100
Marchin, R. M., Esperon-Rodriguez, M., Tjoelker, M. G., & Ellsworth, D. S. (2025). Understanding urban tree heat and drought stress by tracking growth and recovery following an extreme year. Landscape and Urban Planning, 261, Article 105394. https://doi.org/10.1016/j.landurbplan.2025.105394 DOI: https://doi.org/10.1016/j.landurbplan.2025.105394
Martínez-Trinidad, T., Plascencia-Escalante, F. O., e Islas-Rodríguez, L. (2013a). La relación entre los carbohidratos y la vitalidad en árboles urbanos. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(3), 459-468. https://doi.org/10.5154/r.rchscfa.2012.03.016 DOI: https://doi.org/10.5154/r.rchscfa.2012.03.016
Martínez-Trinidad, T., Plascencia-Escalante, F. O., y Cetina-Alcalá, V. M. (2013b). Crecimiento y vitalidad de Populus alba L. con desmoche y tratado con paclobutrazol. Revista Chapingo Serie Horticultura, 19(3), 381-388. https://doi.org/10.5154/r.rchsh.2013.05.016 DOI: https://doi.org/10.5154/r.rchsh.2013.05.016
Martinez-Trinidad, T., Watson, W. T., Arnold, M. A., & Lombardini, L. (2009). Investigations of exogenous applications of carbohydrates on the growth and vitality of live oaks. Urban Forestry & Urban Greening, 8(1), 41-48. https://doi.org/10.1016/j.ufug.2008.11.003 DOI: https://doi.org/10.1016/j.ufug.2008.11.003
Morales-Gallegos, L. M., Martínez-Trinidad, T., Gómez-Guerrero, A., Razo-Zarate, R., y Suárez-Espinoza, J. (2019). Inyecciones de glucosa en Jacaranda mimosifolia D. Don en áreas urbanas de Texcoco de Mora. Revista Mexicana de Ciencias Forestales, 10(52), 79-98. https://doi.org/10.29298/rmcf.v10i52.414 DOI: https://doi.org/10.29298/rmcf.v10i52.414
Morales-Gallegos, L. M., Martínez-Trinidad, T., Gómez-Guerrero, A., & Suárez-Espinosa, J. (2020). Carbohydrate-based urban soil amendments to improve urban tree establishment. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 26(3), 343-356. https://doi.org/10.5154/r.rchscfa.2019.10.076 DOI: https://doi.org/10.5154/r.rchscfa.2019.10.076
Noronha, H., Silva, A., Dai, Z., Gallusci, P., Rombolà, A. D., Delrot, S., & Gerós, H. (2018). A molecular perspective on starch metabolism in woody tissues. Planta, 248, 559-568. https://doi.org/10.1007/s00425-018-2954-2 DOI: https://doi.org/10.1007/s00425-018-2954-2
Ördög, V., Stirk, W. A., Van Staden, J., Novák, O., & Strnad, M. (2004). Endogenous cytokinins in three genera of microalgae from the Chlorophyta. Journal of Phycology, 40(1), 88-95. https://doi.org/10.1046/j.1529-8817.2004.03046.x DOI: https://doi.org/10.1046/j.1529-8817.2004.03046.x
Percival, G. C. (2010). Effect of systemic inducing resistance and biostimulant materials on apple scab using a detached leaf bioassay. Arboriculture & Urban Forestry, 36(1), 41-46. https://doi.org/10.48044/jauf.2010.006 DOI: https://doi.org/10.48044/jauf.2010.006
Pérez-Baltazar, I., Báez-Pérez, A. L., Osuna-Vallejo, V., Armendáriz-Arnez, C., y Lindig-Cisneros, R. (2020). Crecimiento de Fraxinus uhdei inoculado con dos cepas ectomicorrízicas en dos sustratos, uno contaminado con mercurio. Revista Internacional de Contaminación Ambiental, 36(2), 455-464. https://doi.org/10.20937/RICA.53543 DOI: https://doi.org/10.20937/RICA.53543
Ricci, M., Tilbury, L., Daridon, B., & Sukalac, K. (2019). General principles to justify plant biostimulant claims. Frontiers in Plant Science, 10, Article 494. https://doi.org/10.3389/fpls.2019.00494 DOI: https://doi.org/10.3389/fpls.2019.00494
Rosier, C. L., Polson, S. W., D’Amico III, V., Kan, J., & Trammell, T. L. E. (2021). Urbanization pressures alter tree rhizosphere microbiomes. Scientific Reports, 11, Article 9447. https://doi.org/10.1038/s41598-021-88839-8 DOI: https://doi.org/10.1038/s41598-021-88839-8
Rusterholz, H.-P., Studer, M., Zwahlen, V., & Baur, B. (2020). Plant-mycorrhiza association in urban forests: Effects of the degree of urbanization and forest size on the performance of sycamore (Acer pseudoplatanus) saplings. Urban Forestry & Urban Greening, 56, Article 126872. https://doi.org/10.1016/j.ufug.2020.126872 DOI: https://doi.org/10.1016/j.ufug.2020.126872
Sebastiana, M., Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Monteiro, F., Figueiredo, A., Maia, M., Nascimento, R., Sousa-Silva, M., Ferreira, A. N., Cordeiro, C., Marques, A. P., Sousa, L., Malhó, R., & Peñuelas, J. (2021). Metabolomics and transcriptomics to decipher molecular mechanisms underlying ectomycorrhizal root colonization of an oak tree. Scientific Reports, 11, Article 8576. https://doi.org/10.1038/s41598-021-87886-5 DOI: https://doi.org/10.1038/s41598-021-87886-5
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259 DOI: https://doi.org/10.3390/plants10020259
Shao, W., Yu, H., Liu, H., Xu, G., Wang, L., Wu, W., Wu, G., & Si, P. (2023). Effects of glucose and mannose on nutrient absorption and fruit quality in peach (Prunus persica L.). Journal of Soil Science and Plant Nutrition, 23, 1326-1338. https://doi.org/10.1007/s42729-022-00902-z DOI: https://doi.org/10.1007/s42729-022-00902-z
Shiu, J.-H., Huang, Y.-C., Lu, Z.-T., Jien, S.-H., Wu, M.-L., & Wu, Y.-T. (2022). Biochar-based compost affects bacterial community structure and induces a priming effect on soil organic carbon mineralization. Processes, 10(4), Article 682. https://doi.org/10.3390/pr10040682 DOI: https://doi.org/10.3390/pr10040682
Shuai, W., Dun, J., Qinghui, M., Mingtao, T., Jiaqi, Z., Xiaoxia, L., Zhaojun, M., & Shanchun, Y. (2021). Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba×P. berolinensis leaves. Journal of Beijing Forestry University, 43(5), 86-92. http://j.bjfu.edu.cn/en/article/doi/10.12171/j.1000-1522.20200172?viewType=citedby-info
Sieverding, E., Álves-da Silva, G., Berndt, R., & Oehl, F. (2014, October-December). Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon, 129(2), 373-386. https://doi.org/10.5248/129.373 DOI: https://doi.org/10.5248/129.373
Sun, W., & Shahrajabian, M. H. (2023). The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants, 12(17), 3101. https://doi.org/10.3390/plants12173101 DOI: https://doi.org/10.3390/plants12173101
Sun, W., Shahrajabian, M. H., Kuang, Y., & Wang, N. (2024). Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants, 13(2), Article 210. https://doi.org/10.3390/plants13020210 DOI: https://doi.org/10.3390/plants13020210
Tanis, S. R., McCullough, D. G., & Cregg, B. M. (2015). Effects of paclobutrazol and fertilizer on the physiology, growth and biomass allocation of three Fraxinus species. Urban Forestry & Urban Greening, 14(3), 590-598. https://doi.org/10.1016/j.ufug.2015.05.011 DOI: https://doi.org/10.1016/j.ufug.2015.05.011
Tonn, N., & Ibáñez, I. (2017). Plant-mycorrhizal fungi associations along an urbanization gradient: implications for tree seedling survival. Urban Ecosystems, 20, 823-837. https://doi.org/10.1007/s11252-016-0630-5 DOI: https://doi.org/10.1007/s11252-016-0630-5
Wang, Y., Chang, Q., Fan, P., & Shi, X. (2022). From urban greenspace to health behaviors: An ecosystem services-mediated perspective. Environmental Research, 213, Article 113664. https://doi.org/10.1016/j.envres.2022.113664 DOI: https://doi.org/10.1016/j.envres.2022.113664
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant Science, 7, Article 2049. https://doi.org/10.3389/fpls.2016.02049 DOI: https://doi.org/10.3389/fpls.2016.02049
Zhang, H., Li, L., Ren, W., Zhang, W., Tang, M., & Chen, H. (2022). Arbuscular mycorrhizal fungal colonization improves growth, photosynthesis, and ROS regulation of split-root poplar under drought stress. Acta Physiologiae Plantarum, 44, Article 62. https://doi.org/10.1007/s11738-022-03393-8 DOI: https://doi.org/10.1007/s11738-022-03393-8
Zhang, P., McDowell, N. G., Zhou, X., Wang, W., Leff, R. T., Pivovaroff, A. L., Zhang, H., Chow, P. S., Ward, N. D., Indivero, J., Yabusaki, S. B., Waichler, S., & Bailey, V. L. (2021). Declining carbohydrate content of Sitka-spruce trees dying from seawater exposure. Plant physiology, 185(4), 1682-1696. https://doi.org/10.1093/plphys/kiab002 DOI: https://doi.org/10.1093/plphys/kiab002
Zhou, S., Gao, X., Wang, C., Yang, G., Cram, W. J., & He, G. (2009). Identification of sugar signals controlling the nitrate uptake by rice roots using a noninvasive technique. Zeitschrift für Naturforschung, 64c, 697-703. https://doi.org/10.1515/znc-2009-9-1015 DOI: https://doi.org/10.1515/znc-2009-9-1015
Zulfiqar, F., Moosa, A., Ali, H. M., Bermejo, N. F., & Munné-Bosch, S. (2024). Biostimulants: A sufficiently effective tool for sustainable agriculture in the era of climate change? Plant Physiology and Biochemistry, 211, Article 108699. https://doi.org/10.1016/j.plaphy.2024.108699 DOI: https://doi.org/10.1016/j.plaphy.2024.108699
Zwiazek, J. J., Equiza, M. A., Karst, J., Senorans, J., Wartenbe, M., & Calvo-Polanco, M. (2019). Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress. Mycorrhiza, 29, 303-312. https://doi.org/10.1007/s00572-019-00893-3 DOI: https://doi.org/10.1007/s00572-019-00893-3

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Mexicana de Ciencias Forestales

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publiquen en la Revista Mexicana de Ciencias Forestales aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, la Revista Mexicana de Ciencias Forestales reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Todos los textos publicados por la Revista Mexicana de Ciencias Forestales –sin excepción– se distribuyen amparados bajo la licenciaCreative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista. (no permite el uso comercial)
Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en la Revista Mexicana de Ciencias Forestales (por ejemplo, incluirlo en un repositorio institucional o darlo a conocer en otros medios en papel o electrónicos) siempre que indique clara y explícitamente que el trabajo se publicó por primera vez en la Revista Mexicana de Ciencias Forestales.
Para todo lo anterior, los autores deben remitir el formato de carta-cesión de la propiedad de los derechos de la primera publicación debidamente requisitado y firmado por los autores/as. Este formato debe ser remitido en archivo PDF al correo: editorial.forestal@inifap.gob.mx
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.