Composición y almacenamiento de carbono en palmas del Hotspot Andino-Amazónico, bosque piemontano ecuatoriano

Autores/as

DOI:

https://doi.org/10.29298/rmcf.v16i89.1529

Palabras clave:

Arecaceae, Almacenamiento de carbono, Amazonía ecuatoriana, Conservación, Gradiente altitudinal, Iriartea deltoidea

Resumen

En el contexto del cambio climático, las palmas de los bosques de Ecuador son cruciales, tanto para la biodiversidad como para las comunidades locales que dependen de ellas para obtener alimentos y materiales de construcción. En este estudio se analiza la diversidad de palmas, su capacidad de almacenamiento de carbono en un bosque amazónico ecuatoriano, y se resalta su importancia socioeconómica. Se utilizó una metodología de medición alométrica adaptada a las condiciones locales, se determinó la biomasa y el carbono almacenado. Las mediciones de diámetro a la altura del pecho y la altura total revelaron que Iriartea deltoidea y Oenocarpus bataua son las especies con las mayores tasas de captura de carbono, especialmente en zonas de baja altitud. Se observó una disminución notable en la capacidad de almacenamiento de carbono al aumentar la altitud, con promedios de 11.20 Mg ha-1 en la zona de 600 a 701 msnm, y de 3.11 Mg ha-1 en el intervalo de 901 a 1 000 msnm. Además de su relevancia para la mitigación del cambio climático, estas especies son fundamentales para las comunidades locales, ya que les proveen alimentos, materiales de construcción y productos artesanales. Se subraya la necesidad de desarrollar estrategias de conservación enfocadas en áreas de baja altitud con alta densidad de palmas y promover el uso sostenible de sus recursos derivados para beneficios económicos locales. Destaca la urgencia de implementar modelos alométricos más precisos que mejoren las estimaciones de biomasa y carbono almacenado, para fortalecer su integración en políticas de conservación global.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alvez-Valles, C. M., Balslev, H., Garcia-Villacorta, R., Carvalho, F. A., & Menini N., L. (2018). Palm species richness, latitudinal gradients, sampling effort, and deforestation in the Amazon region. Acta Botanica Brasilica, 32(4), 527-539. https://doi.org/10.1590/0102-33062017abb0400 DOI: https://doi.org/10.1590/0102-33062017abb0400

Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R., & Morales-Ruiz, D. E. (2019). Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Systems, 93, 213-227. https://doi.org/10.1007/s10457-018-0310-y DOI: https://doi.org/10.1007/s10457-018-0310-y

Balslev, H., Copete, J.-C., Pedersen, D., Bernal, R., Galeano, G., Duque, Á., Berrio, J. C., & Sanchez, M. (2017). Palm diversity and abundance in the Colombian Amazon. In R. W. Myster (Ed.), Forest structure, function and dynamics in Western Amazonia (pp. 101-123). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119090670.ch5 DOI: https://doi.org/10.1002/9781119090670.ch5

Balslev, H., Pedersen, D., Navarrete, H., y Pintaud, J.-C. (2015). Diversidad y abundacia de palmas. En H. Balslev, M. J. Marcía y H. Navarreta (Edits.), Cosecha de palmas en el noreste de Suramérica: bases cientícas para su manejo y conservación (pp. 13-25). Pontificia Universidad Católica del Ecuador. https://www.researchgate.net/publication/294548512_Cosecha_de_palmas_en_el_noroeste_de_Suramerica_bases_cientificas_para_su_manejo_y_conservacion

Berlanga S., V., y Rubio H., M. J. (2012). Clasificación de pruebas no paramétricas. Cómo aplicarlas en SPSS. REIRE, Revista d’Innovació i Recerca en Educació, 5(2), 101-113. https://doi.org/10.1344/reire2012.5.2528

Borchsenius, F., y Moraes R., M. (2006). Diversidad y usos de palmeras andinas (Arecaceae). En M. Moraes R., B. Øllgaard, L. P. Kvist, F. Borchsenius y H. Balslev (Edits.), Botánica Económica de los Andes Centrales (pp. 412-433). Universidad Mayor de San Andrés. https://www.researchgate.net/publication/228761462_Diversidad_y_usos_de_palmeras_andinas_Arecaceae

Bravo V., E. (2014). La biodiversidad en el Ecuador. Universidad Politécnica Salesiana. https://dspace.ups.edu.ec/bitstream/123456789/6788/1/La%20Biodiversidad.pdf

Bravo-Medina, C., Goyes-Vera, F., Arteaga-Crespo, Y., García-Quintana, Y., & Changoluisa, D. (2021). A soil quality index for seven productive landscapes in the Andean-Amazonian foothills of Ecuador. Land Degradation & Development, 32(6), 2226-2241. https://doi.org/10.1002/ldr.3897 DOI: https://doi.org/10.1002/ldr.3897

Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H., Barfod, A., Copete, J. C., & Macía, M. J. (2014). Ecological community traits and traditional knowledge shape palm ecosystem services in northwestern South America. Forest Ecology and Management, 334, 28-42. https://doi.org/10.1016/j.foreco.2014.08.019 DOI: https://doi.org/10.1016/j.foreco.2014.08.019

Cazzolla G., R., Reich, P. B., Gamarra, J. G. P., Crowther, T., Hui, C., Morera, A., Bastin, J.-F., de-Miguel, S., Nabuurs, G.-J., Svenning, J.-C., Serra-Diaz, J. M., Merow, C., Enquist, B., Kamenetsky, M., Lee, J., Zhu, J., Fang, J., Jacobs, D. F., … Liang, J. (2022). The number of tree species on Earth. PNAS Proceedings of the National Academy of Sciences, 119(6), Article e2115329119. https://doi.org/10.1073/pnas.2115329119 DOI: https://doi.org/10.1073/pnas.2115329119

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99. https://doi.org/10.1007/s00442-005-0100-x DOI: https://doi.org/10.1007/s00442-005-0100-x

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351-366. https://doi.org/10.1111/J.1461-0248.2009.01285.X DOI: https://doi.org/10.1111/j.1461-0248.2009.01285.x

Dantas, D., Terra, M. de C. N. S., Rodrigues P., L. O., Calegario, N., & Maciel, S. M. (2021). Above and belowground carbon stock in a tropical forest in Brazil. Acta Scientiarum. Agronomy, 43, Article e48276. https://doi.org/10.4025/actasciagron.v43i1.48276 DOI: https://doi.org/10.4025/actasciagron.v43i1.48276

Dauber, E., Terán, J., y Guzmán, R. (2000). Estimaciones de biomasa y carbono en bosques naturales de Bolivia. Revista Forestal Iberoamericana, 1(1), 1-10. https://www.forest.ula.ve/rforibam/archivos/DOC2.pdf

De la Torre, L., Navarrete, H., Muriel M., P., Macía, M. J., y Balslev, H. (Edits.). (2008). Enciclopedia de las plantas útiles del Ecuador. Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador y Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus. https://bibdigital.rjb.csic.es/records/item/16016-enciclopedia-de-las-plantas-utiles-del-ecuador

De Lima, R. A. F., Sánchez-Tapia, A., Mortara, S. R., ter Steege, H., & de Siqueira, M. F. (2023). plantR: An R package and workflow for managing species records from biological collections. Methods in Ecology and Evolution, 14(2), 332-339. https://doi.org/10.1111/2041-210X.13779 DOI: https://doi.org/10.1111/2041-210X.13779

Fernandez, D. S. (2019, febrero 18). Laboratorio de Ecología de Comunidades: Biodiversidad. Análisis de Biodiversidad con vegan y BiodiversityR. RPubs by RStudio. http://rpubs.com/dsfernandez/468964

Galeas, R., y Guevara, J. E. (Eds.). (2012). Sistema de clasificación de los ecosistemas del Ecuador Continental. Ministerio de Ambiente del Ecuador. https://www.ambiente.gob.ec/wp-content/uploads/downloads/2012/09/LEYENDA-ECOSISTEMAS_ECUADOR_2.pdf

García-Cox, W., López-Tobar, R., Herrera-Feijoo, R. J., Tapia, A., Heredia R., M., Toulkeridis, T., & Torres, B. (2023). Floristic composition, structure, and aboveground biomass of the Moraceae Family in an Evergreen Andean Amazon Forest, Ecuador. Forests, 14(7), 1406. https://doi.org/10.3390/f14071406 DOI: https://doi.org/10.3390/f14071406

García-Quintana, Y., Arteaga-Crespo, Y., Torres-Navarrete, B., Bravo-Medina, C., y Robles-Morillo, M. (2021). Biomasa aérea de familias botánicas en un bosque siempreverde piemontano sometido a grados de intervención. Colombia Forestal, 24(1), 45-59. https://doi.org/10.14483/2256201X.15939 DOI: https://doi.org/10.14483/2256201X.15939

Gentry, A. H. (1982). Patterns of Neotropical plant species diversity. In M. K. Hecht, B. Wallace & G. T. Prance (Edits.), Evolutionary Biology (Vol. 15, pp. 1-84). Springer New York. https://doi.org/10.1007/978-1-4615-6968-8_1 DOI: https://doi.org/10.1007/978-1-4615-6968-8_1

Goodman, R. C., Phillips, O. L., del Castillo T., D., Freitas, L., Tapia C., S., Monteagudo, A., & Baker, T. R. (2013). Amazon palm biomass and allometry. Forest Ecology and Management, 310, 994-1004. https://doi.org/10.1016/j.foreco.2013.09.045 DOI: https://doi.org/10.1016/j.foreco.2013.09.045

Gutsche, A., Smith, N., y Wust, W. H. (2008). Frutas amazónicas, postres peruanos de vanguardia. Ministerio de Comercio Exterior y Turismo e Instituto de Investigaciones de la Amazonía Peruana. https://repositorio.iiap.gob.pe/handle/20.500.12921/137

Jost, L., y González-Oreja, J. A. (2012). Midiendo la diversidad biológica: más allá del índice de Shannon. Acta Zoológica Lilloana, 56(1-2), 3-14. https://lillo.org.ar/revis/zoo/2012/v56n1_2/v56n1_2a01.pdf

Keeling, H. C., & Phillips, O. L. (2007). The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16(5), 618-631. https://doi.org/10.1111/j.1466-8238.2007.00314.x DOI: https://doi.org/10.1111/j.1466-8238.2007.00314.x

Kristiansen, T., Svenning, J.-C., Grández, C., Salo, J., & Balslev, H. (2009). Commonness of Amazonian palm (Arecaceae) species: Cross-scale links and potential determinants. Acta Oecologica, 35(4), 554-562. https://doi.org/10.1016/j.actao.2009.05.001 DOI: https://doi.org/10.1016/j.actao.2009.05.001

López-Santiago, J. G., Casanova-Lugo, F., Villanueva-López, G., Díaz-Echeverría, V. F., Solorio-Sánchez, F. J., Martínez-Zurimendi, P., Aryal, D. R., & Chay-Canul, A. J. (2019). Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforest Systems, 93, 199-211. https://doi.org/10.1007/s10457-018-0259-x DOI: https://doi.org/10.1007/s10457-018-0259-x

Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 15(8), 332-337. https://doi.org/10.1016/S0169-5347(00)01906-6 DOI: https://doi.org/10.1016/S0169-5347(00)01906-6

Medrano M., M. de J., Hernández, F. J., Corral R., S., y Nájera L., J. A. (2017). Diversidad arbórea a diferentes niveles de altitud en la región de El Salto, Durango. Revista Mexicana de Ciencias Forestales, 8(40), 57-68. https://doi.org/10.29298/rmcf.v8i40.36 DOI: https://doi.org/10.29298/rmcf.v8i40.36

Miranda, F., Coronel-Chugden, J.-W., Veneros, J., García, L., Guadalupe, G. A., & Arellanos, E. (2025). Species diversity of the Family Arecaceae: What are the implications of their biogeographical representation? An analysis in Amazonas, Northeastern Peru. Forests, 16(1), 76. https://doi.org/10.3390/f16010076 DOI: https://doi.org/10.3390/f16010076

Montufar, R., & Pintaud, J.-C. (2006). Variation in species composition, abundance and microhabitat preferences among western Amazonian terra firme palm communities. Botanical Journal of the Linnean Society, 151(1), 127-140. https://doi.org/10.1111/j.1095-8339.2006.00528.x DOI: https://doi.org/10.1111/j.1095-8339.2006.00528.x

Neill, D. A. (2012). ¿Cuántas especies nativas de plantas vasculares hay en Ecuador? Revista Amazónica Ciencia y Tecnología, 1(1), 70-83. https://doi.org/10.59410/RACYT-v01n01ep08-0001 DOI: https://doi.org/10.59410/RACYT-v01n01ep08-0001

Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., & Grace, J. (1998). Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 282(5388), 439-442. https://www.science.org/doi/10.1126/science.282.5388.439 DOI: https://doi.org/10.1126/science.282.5388.439

Pintaud, J.-C., Galeano, G., Balslev, H., Bernal, R., Borchsenius, F., Ferreira, E., de Granville, J.-J., Mejía, K., Millán, B., Moraes, M., Noblick, L., Stauffer, F. W., & Kahn, F. (2008). Las palmeras de América del Sur: diversidad, distribución e historia evolutiva. Revista Peruana de Biología, 15(S1), 7-29. http://www.scielo.org.pe/scielo.php?pid=S1727-99332008000000003&script=sci_abstract&tlng=en DOI: https://doi.org/10.15381/rpb.v15i3.2662

Pradhan, B. M., Awasthi, K. D., & Bajracharya, R. M. (2012). Soil organic carbon stocks under different forest types in Pokhare khola sub-watershed: a case study from Dhading district of Nepal. WIT Transactions on Ecology and the Environment, 157, 535-546. https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/157/23310 DOI: https://doi.org/10.2495/AIR120471

Ter Steege, H. (1998). The use of forest inventory data for a National Protected Area Strategy in Guyana. Biodiversity and Conservation, 7(11), 1457-1483. https://doi.org/10.1023/A:1008893920157 DOI: https://doi.org/10.1023/A:1008893920157

Torres, B., Vasseur, L., López, R., Lozano, P., García, Y., Arteaga, Y., Bravo, C., Barba, C., & García, A. (2020). Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador. Agroforestry Systems, 94, 1235-1245. https://doi.org/10.1007/s10457-018-00342-8 DOI: https://doi.org/10.1007/s10457-018-00342-8

Vormisto, J., Svenning, J.-C., Hall, P., & Balslev, H. (2004). Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology, 92(4), 577-588. https://doi.org/10.1111/j.0022-0477.2004.00904.x DOI: https://doi.org/10.1111/j.0022-0477.2004.00904.x

Zambrano, E., Torres, B., Ochoa-Moreno, S., Reyes, H., Torres, A., Velasco, C., y Heredia R., M. (2021). Determinantes socioeconómicas del uso forestal maderable en la zona de amortiguamiento del Parque Nacional Sumaco Napo Galeras, Amazonía Ecuatoriana. Ecosistemas, 30(3), 2216. https://doi.org/10.7818/ECOS.2216 DOI: https://doi.org/10.7818/ECOS.2216

Publicado

02-05-2025

Cómo citar

Reyes, Héctor, Bolier Torres-Navarrete, Cristhian Tipán-Torres, Erika Zambrano-Alcívar, Carlos Bravo-Medina, y Antón García-Martínez. 2025. «Composición Y Almacenamiento De Carbono En Palmas Del Hotspot Andino-Amazónico, Bosque Piemontano Ecuatoriano». Revista Mexicana De Ciencias Forestales 16 (89). México, ME:84-110. https://doi.org/10.29298/rmcf.v16i89.1529.

Número

Sección

Artículo Científico