Carbon composition and storage in palms of the Andean-Amazonian hotspot, Ecuadorian piedmont forest
DOI:
https://doi.org/10.29298/rmcf.v16i89.1529Keywords:
Arecaceae, Altitudinal gradient, Carbon storage, Conservation, Ecuadorian Amazon, Iriartea deltoideaAbstract
Within the context of climate change, Ecuador's forest palms are crucial both for biodiversity and for the local communities that depend on them for food and building materials. This study analyzes the diversity of palms and their carbon storage capacity in an Ecuadorian Amazon forest, and highlights their socioeconomic importance. An allometric measurement methodology adapted to local conditions was used to determine biomass and carbon stocks. The diameter at breast height and total height revealed that Iriartea deltoidea and Oenocarpus bataua are the species with the highest carbon sequestration rates, especially in low altitude areas. A notable decrease in carbon storage capacity was observed with increasing altitude, with averages of 11.20 Mg ha-1 in the area at 600 to 701 masl, and 3.11 Mg ha-1 within an altitude interval of 901 to 1 000 masl. In addition to their relevance for climate change mitigation, these species are essential for local communities, providing them with food, building materials, and materials for handicraft products. There is a considerable need to develop conservation strategies focused on low altitude areas with high palm density and promote the sustainable use of their derived resources for local economic benefits. Also, it is urgent to implement more accurate allometric models to improve biomass and carbon stock estimates in order to reinforce their integration into global conservation policies.
Downloads
References
Alvez-Valles, C. M., Balslev, H., Garcia-Villacorta, R., Carvalho, F. A., & Menini N., L. (2018). Palm species richness, latitudinal gradients, sampling effort, and deforestation in the Amazon region. Acta Botanica Brasilica, 32(4), 527-539. https://doi.org/10.1590/0102-33062017abb0400 DOI: https://doi.org/10.1590/0102-33062017abb0400
Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R., & Morales-Ruiz, D. E. (2019). Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Systems, 93, 213-227. https://doi.org/10.1007/s10457-018-0310-y DOI: https://doi.org/10.1007/s10457-018-0310-y
Balslev, H., Copete, J.-C., Pedersen, D., Bernal, R., Galeano, G., Duque, Á., Berrio, J. C., & Sanchez, M. (2017). Palm diversity and abundance in the Colombian Amazon. In R. W. Myster (Ed.), Forest structure, function and dynamics in Western Amazonia (pp. 101-123). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119090670.ch5 DOI: https://doi.org/10.1002/9781119090670.ch5
Balslev, H., Pedersen, D., Navarrete, H., y Pintaud, J.-C. (2015). Diversidad y abundacia de palmas. En H. Balslev, M. J. Marcía y H. Navarreta (Edits.), Cosecha de palmas en el noreste de Suramérica: bases cientícas para su manejo y conservación (pp. 13-25). Pontificia Universidad Católica del Ecuador. https://www.researchgate.net/publication/294548512_Cosecha_de_palmas_en_el_noroeste_de_Suramerica_bases_cientificas_para_su_manejo_y_conservacion
Berlanga S., V., y Rubio H., M. J. (2012). Clasificación de pruebas no paramétricas. Cómo aplicarlas en SPSS. REIRE, Revista d’Innovació i Recerca en Educació, 5(2), 101-113. https://doi.org/10.1344/reire2012.5.2528
Borchsenius, F., y Moraes R., M. (2006). Diversidad y usos de palmeras andinas (Arecaceae). En M. Moraes R., B. Øllgaard, L. P. Kvist, F. Borchsenius y H. Balslev (Edits.), Botánica Económica de los Andes Centrales (pp. 412-433). Universidad Mayor de San Andrés. https://www.researchgate.net/publication/228761462_Diversidad_y_usos_de_palmeras_andinas_Arecaceae
Bravo V., E. (2014). La biodiversidad en el Ecuador. Universidad Politécnica Salesiana. https://dspace.ups.edu.ec/bitstream/123456789/6788/1/La%20Biodiversidad.pdf
Bravo-Medina, C., Goyes-Vera, F., Arteaga-Crespo, Y., García-Quintana, Y., & Changoluisa, D. (2021). A soil quality index for seven productive landscapes in the Andean-Amazonian foothills of Ecuador. Land Degradation & Development, 32(6), 2226-2241. https://doi.org/10.1002/ldr.3897 DOI: https://doi.org/10.1002/ldr.3897
Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H., Barfod, A., Copete, J. C., & Macía, M. J. (2014). Ecological community traits and traditional knowledge shape palm ecosystem services in northwestern South America. Forest Ecology and Management, 334, 28-42. https://doi.org/10.1016/j.foreco.2014.08.019 DOI: https://doi.org/10.1016/j.foreco.2014.08.019
Cazzolla G., R., Reich, P. B., Gamarra, J. G. P., Crowther, T., Hui, C., Morera, A., Bastin, J.-F., de-Miguel, S., Nabuurs, G.-J., Svenning, J.-C., Serra-Diaz, J. M., Merow, C., Enquist, B., Kamenetsky, M., Lee, J., Zhu, J., Fang, J., Jacobs, D. F., … Liang, J. (2022). The number of tree species on Earth. PNAS Proceedings of the National Academy of Sciences, 119(6), Article e2115329119. https://doi.org/10.1073/pnas.2115329119 DOI: https://doi.org/10.1073/pnas.2115329119
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99. https://doi.org/10.1007/s00442-005-0100-x DOI: https://doi.org/10.1007/s00442-005-0100-x
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351-366. https://doi.org/10.1111/J.1461-0248.2009.01285.X DOI: https://doi.org/10.1111/j.1461-0248.2009.01285.x
Dantas, D., Terra, M. de C. N. S., Rodrigues P., L. O., Calegario, N., & Maciel, S. M. (2021). Above and belowground carbon stock in a tropical forest in Brazil. Acta Scientiarum. Agronomy, 43, Article e48276. https://doi.org/10.4025/actasciagron.v43i1.48276 DOI: https://doi.org/10.4025/actasciagron.v43i1.48276
Dauber, E., Terán, J., y Guzmán, R. (2000). Estimaciones de biomasa y carbono en bosques naturales de Bolivia. Revista Forestal Iberoamericana, 1(1), 1-10. https://www.forest.ula.ve/rforibam/archivos/DOC2.pdf
De la Torre, L., Navarrete, H., Muriel M., P., Macía, M. J., y Balslev, H. (Edits.). (2008). Enciclopedia de las plantas útiles del Ecuador. Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador y Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus. https://bibdigital.rjb.csic.es/records/item/16016-enciclopedia-de-las-plantas-utiles-del-ecuador
De Lima, R. A. F., Sánchez-Tapia, A., Mortara, S. R., ter Steege, H., & de Siqueira, M. F. (2023). plantR: An R package and workflow for managing species records from biological collections. Methods in Ecology and Evolution, 14(2), 332-339. https://doi.org/10.1111/2041-210X.13779 DOI: https://doi.org/10.1111/2041-210X.13779
Fernandez, D. S. (2019, febrero 18). Laboratorio de Ecología de Comunidades: Biodiversidad. Análisis de Biodiversidad con vegan y BiodiversityR. RPubs by RStudio. http://rpubs.com/dsfernandez/468964
Galeas, R., y Guevara, J. E. (Eds.). (2012). Sistema de clasificación de los ecosistemas del Ecuador Continental. Ministerio de Ambiente del Ecuador. https://www.ambiente.gob.ec/wp-content/uploads/downloads/2012/09/LEYENDA-ECOSISTEMAS_ECUADOR_2.pdf
García-Cox, W., López-Tobar, R., Herrera-Feijoo, R. J., Tapia, A., Heredia R., M., Toulkeridis, T., & Torres, B. (2023). Floristic composition, structure, and aboveground biomass of the Moraceae Family in an Evergreen Andean Amazon Forest, Ecuador. Forests, 14(7), 1406. https://doi.org/10.3390/f14071406 DOI: https://doi.org/10.3390/f14071406
García-Quintana, Y., Arteaga-Crespo, Y., Torres-Navarrete, B., Bravo-Medina, C., y Robles-Morillo, M. (2021). Biomasa aérea de familias botánicas en un bosque siempreverde piemontano sometido a grados de intervención. Colombia Forestal, 24(1), 45-59. https://doi.org/10.14483/2256201X.15939 DOI: https://doi.org/10.14483/2256201X.15939
Gentry, A. H. (1982). Patterns of Neotropical plant species diversity. In M. K. Hecht, B. Wallace & G. T. Prance (Edits.), Evolutionary Biology (Vol. 15, pp. 1-84). Springer New York. https://doi.org/10.1007/978-1-4615-6968-8_1 DOI: https://doi.org/10.1007/978-1-4615-6968-8_1
Goodman, R. C., Phillips, O. L., del Castillo T., D., Freitas, L., Tapia C., S., Monteagudo, A., & Baker, T. R. (2013). Amazon palm biomass and allometry. Forest Ecology and Management, 310, 994-1004. https://doi.org/10.1016/j.foreco.2013.09.045 DOI: https://doi.org/10.1016/j.foreco.2013.09.045
Gutsche, A., Smith, N., y Wust, W. H. (2008). Frutas amazónicas, postres peruanos de vanguardia. Ministerio de Comercio Exterior y Turismo e Instituto de Investigaciones de la Amazonía Peruana. https://repositorio.iiap.gob.pe/handle/20.500.12921/137
Jost, L., y González-Oreja, J. A. (2012). Midiendo la diversidad biológica: más allá del índice de Shannon. Acta Zoológica Lilloana, 56(1-2), 3-14. https://lillo.org.ar/revis/zoo/2012/v56n1_2/v56n1_2a01.pdf
Keeling, H. C., & Phillips, O. L. (2007). The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16(5), 618-631. https://doi.org/10.1111/j.1466-8238.2007.00314.x DOI: https://doi.org/10.1111/j.1466-8238.2007.00314.x
Kristiansen, T., Svenning, J.-C., Grández, C., Salo, J., & Balslev, H. (2009). Commonness of Amazonian palm (Arecaceae) species: Cross-scale links and potential determinants. Acta Oecologica, 35(4), 554-562. https://doi.org/10.1016/j.actao.2009.05.001 DOI: https://doi.org/10.1016/j.actao.2009.05.001
López-Santiago, J. G., Casanova-Lugo, F., Villanueva-López, G., Díaz-Echeverría, V. F., Solorio-Sánchez, F. J., Martínez-Zurimendi, P., Aryal, D. R., & Chay-Canul, A. J. (2019). Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforest Systems, 93, 199-211. https://doi.org/10.1007/s10457-018-0259-x DOI: https://doi.org/10.1007/s10457-018-0259-x
Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology & Evolution, 15(8), 332-337. https://doi.org/10.1016/S0169-5347(00)01906-6 DOI: https://doi.org/10.1016/S0169-5347(00)01906-6
Medrano M., M. de J., Hernández, F. J., Corral R., S., y Nájera L., J. A. (2017). Diversidad arbórea a diferentes niveles de altitud en la región de El Salto, Durango. Revista Mexicana de Ciencias Forestales, 8(40), 57-68. https://doi.org/10.29298/rmcf.v8i40.36 DOI: https://doi.org/10.29298/rmcf.v8i40.36
Miranda, F., Coronel-Chugden, J.-W., Veneros, J., García, L., Guadalupe, G. A., & Arellanos, E. (2025). Species diversity of the Family Arecaceae: What are the implications of their biogeographical representation? An analysis in Amazonas, Northeastern Peru. Forests, 16(1), 76. https://doi.org/10.3390/f16010076 DOI: https://doi.org/10.3390/f16010076
Montufar, R., & Pintaud, J.-C. (2006). Variation in species composition, abundance and microhabitat preferences among western Amazonian terra firme palm communities. Botanical Journal of the Linnean Society, 151(1), 127-140. https://doi.org/10.1111/j.1095-8339.2006.00528.x DOI: https://doi.org/10.1111/j.1095-8339.2006.00528.x
Neill, D. A. (2012). ¿Cuántas especies nativas de plantas vasculares hay en Ecuador? Revista Amazónica Ciencia y Tecnología, 1(1), 70-83. https://doi.org/10.59410/RACYT-v01n01ep08-0001 DOI: https://doi.org/10.59410/RACYT-v01n01ep08-0001
Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., & Grace, J. (1998). Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 282(5388), 439-442. https://www.science.org/doi/10.1126/science.282.5388.439 DOI: https://doi.org/10.1126/science.282.5388.439
Pintaud, J.-C., Galeano, G., Balslev, H., Bernal, R., Borchsenius, F., Ferreira, E., de Granville, J.-J., Mejía, K., Millán, B., Moraes, M., Noblick, L., Stauffer, F. W., & Kahn, F. (2008). Las palmeras de América del Sur: diversidad, distribución e historia evolutiva. Revista Peruana de Biología, 15(S1), 7-29. http://www.scielo.org.pe/scielo.php?pid=S1727-99332008000000003&script=sci_abstract&tlng=en DOI: https://doi.org/10.15381/rpb.v15i3.2662
Pradhan, B. M., Awasthi, K. D., & Bajracharya, R. M. (2012). Soil organic carbon stocks under different forest types in Pokhare khola sub-watershed: a case study from Dhading district of Nepal. WIT Transactions on Ecology and the Environment, 157, 535-546. https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/157/23310 DOI: https://doi.org/10.2495/AIR120471
Ter Steege, H. (1998). The use of forest inventory data for a National Protected Area Strategy in Guyana. Biodiversity and Conservation, 7(11), 1457-1483. https://doi.org/10.1023/A:1008893920157 DOI: https://doi.org/10.1023/A:1008893920157
Torres, B., Vasseur, L., López, R., Lozano, P., García, Y., Arteaga, Y., Bravo, C., Barba, C., & García, A. (2020). Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador. Agroforestry Systems, 94, 1235-1245. https://doi.org/10.1007/s10457-018-00342-8 DOI: https://doi.org/10.1007/s10457-018-00342-8
Vormisto, J., Svenning, J.-C., Hall, P., & Balslev, H. (2004). Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology, 92(4), 577-588. https://doi.org/10.1111/j.0022-0477.2004.00904.x DOI: https://doi.org/10.1111/j.0022-0477.2004.00904.x
Zambrano, E., Torres, B., Ochoa-Moreno, S., Reyes, H., Torres, A., Velasco, C., y Heredia R., M. (2021). Determinantes socioeconómicas del uso forestal maderable en la zona de amortiguamiento del Parque Nacional Sumaco Napo Galeras, Amazonía Ecuatoriana. Ecosistemas, 30(3), 2216. https://doi.org/10.7818/ECOS.2216 DOI: https://doi.org/10.7818/ECOS.2216

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Mexicana de Ciencias Forestales

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Forestales accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Forestales recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Forestales (for example, include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Forestales.
For all the above, the authors shall send the form of Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: ciencia.forestal2@inifap.gob.mx
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.