Phenology of tree species of the Tambopata National Reserve, Peru
DOI:
https://doi.org/10.29298/rmcf.v12i68.1018Keywords:
Phenophase analysis, Amazon forest, climate change, floristic, composition, indicator species, Madre de Dios, phenodynamicsAbstract
The Amazonian ecosystem is one of the most important in the world and also one of the least studied, especially in regard to its vegetation and its phenophases. The objective of this study was to identify and describe the phenological patterns of the most frequent large tree species in the Tambopata National Reserve, Madre de Dios, Peru. The study was conducted between the years 2010 to 2017; by establishing five 50 × 30 m plots for each forest type: Aguajal Forest, Bajío Forest, Successional Forest and Tierra Firme Forest. In each plot, all tree individuals with a diameter ≥ 10 cm were marked and identified at 1.30 m above the ground. An analysis of indicator species by habitat was performed, and the resulting taxa were periodically observed to evaluate the flower bud, flower, immature fruit and mature fruit phenophases. In addition, the influence of precipitation and temperature variables on their phenological responses was evaluated. A total of 1 958 individuals were recorded, belonging to 57 families, 173 genera and 300 species; the Fabaceae, Moraceae and Annonaceae families stand out with the highest number of taxa and Arecaceae, with the highest number of individuals. Eight indicator species were analyzed, two for each forest type. Except in the Aguajal forest, the flower bud and mature fruit phenophases reached their maximum values in September and December-January. This information will contribute to a better understanding of the phenodynamics of each of the forest types in the Tambopata National Reserve.
Downloads
References
Angiosperm Phylogeny Group (APG IV). 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181:1-20. Doi:10.1111/boj.12385. DOI: https://doi.org/10.1111/boj.12385
Alvarez-Montalván, C. E., Manrique-León, S., Vela-Da Fonseca, M., Cardoza-Soarez, J., Callo-Ccorcca, J., Bravo-Camara, P., Castañeda-Tinco, I. and Alvarez-Orellana, J. 2021. Floristic composition, structure and tree diversity of an Amazon forest in Peru. Scientia Agropecuaria 12(1): 73-82. Doi:10.17268/sci.agropecu.2021.009.
Baez, Q. S. M. y J. S. Garate Q. 2017. Estructura y composición florística arbórea en dos tipos de bosque en la Zona de Amortiguamiento, Reserva Nacional de Tambopata. Q'EUÑA 8(1): 39-50. DOI:10.51343/rq.v8i1.103.
Colwell, R. K. 2013. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application. Doi: 10.1613/jair.301.
Daru, B. H., M. M. Kling, E. K. Meineke and A. E. van Wyk. 2019. Temperature controls phenology in continuously flowering Protea species of subtropical Africa. Applications in Plant Sciences 7(3):e1232. Doi: 10.1002/aps3.1232.
Davies, T. J., E. M. Wolkovich, N. J. B. Kraft, N. Salamin, J. M. Allen, T. R. Ault, J. L. Betancourt, K. Bolmgren, E. E. Cleland, T. M. Crimmins, S. J. Mazer, G. J. McCabe, S. Pau, J. Regetz, M. D. Schwartz and S. E. Travers. 2013. Phylogenetic conservatism in plant phenology. Journal of Ecology 101:1520-1530. Doi:10.1111/1365-2745.12154. DOI: https://doi.org/10.1111/1365-2745.12154
Du, Y., L. Mao, S. A. Queenborough, R. P. Freckleton, B. Chen and K. Ma. 2015. Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China. Global Ecology and Biogeography 24:928-938. Doi:10.1111/geb.12303. DOI: https://doi.org/10.1111/geb.12303
Dueñas, L. H. y J. S. Garate. 2018. Diversidad, dominancia y distribución arbórea en Madre de Dios, Perú. Revista Forestal del Perú 33(1): 4-23. Doi:10.21704/rfp.v33i1.1152.
Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345-366. Doi:10.2307/2963459. DOI: https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
Fournier, L. A. 1974. Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 24:422-423. http://orton.catie.ac.cr/repdoc/A077e/A0773e04.html (15 de octubre de 2021).
Girardin, C. A. J., Y. Malhi, C. E. Doughty, D. B. Metcalfe, P. Meir, J. del Aguila-Pasquel, A. Araujo-Murakami, A. C. L. da Costa, J. E. Silva-Espejo, F. Farfán A. and L. Rowlands. 2016. Seasonal trends of Amazonian rainforest phenology, net productivity, and carbon allocation. Global Biogeochemical Cycles 30:700-715. Doi: 10.1002/2015GB005270. DOI: https://doi.org/10.1002/2015GB005270
Häder, D.-P. and P. W. Barnes. 2019. Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems. Science of the Total Environment 682:239-246. Doi: 10.1016/j.scitotenv.2019.05.024.
Jackson, S. D. 2009. Plant responses to photoperiod. New Phytologist 181:517-531. Doi: 10.1111/j.1469-8137.2008.02681.x. DOI: https://doi.org/10.1111/j.1469-8137.2008.02681.x
Körner, C. and D. Basler. 2010. Phenology under global warming. Science 327:1461-1462. Doi:10.1126/science.1186473. DOI: https://doi.org/10.1126/science.1186473
Kruskal, J. B. 1964. nonMetric Multidimensional scaling - a numerical method. Psychometrika 29:115-129. http://cda.psych.uiuc.edu/psychometrika_highly_cited_articles/kruskal_1964b.pdf (15 de octubre de 2021). DOI: https://doi.org/10.1007/BF02289694
Matsumoto, K., T. Ohta, M. Irasawa and T. Nakamura. 2003. Climate change and extensión of the Ginkgo biloba L. growing season in Japan. Global Change Biology 9:1634-1642. Doi: 10.1046/j.1365-2486.2003.00688.x. DOI: https://doi.org/10.1046/j.1365-2486.2003.00688.x
McCune, B. and J. B. Grace. 2002. Analysis of Ecological Communities. Journal of Experimental Marine Biology and Ecology. Vol. 289. MJM Software Design. Doi:10.1016/S0022-0981(03)00091-1. DOI: https://doi.org/10.1016/S0022-0981(03)00091-1
Pires, J. P. A., N. A. C. Marino, A. G. Silva, P. J. F. P. Rodrigues and L. Freitas. 2018. Tree community phenodynamics and its relationship with climatic conditions in a lowland tropical rainforest. Forests 9:114. Doi: 10.3390/f9030114. DOI: https://doi.org/10.3390/f9030114
Phillips, O., T. Baker, T. Feldpausch and R. Brienen. 2016. Manual de campo para el establecimiento y la remedición de parcelas. RAINFOR, The Royal Society. Londres, Inglaterra. 28 p.
R Core Team. 2021. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Austria, Vienna. 105 p.
Ribeiro, J. E. L. S., M. J. G. Hopkins, A. Vicentini, C. A. Sothers, M. A. S. Costa, J. M. Brito, M. A. D. Souza, L. H. Martins, L. G. Lohmann, P. A. Assunção, E. C. Pereira, C. F. Silva, M. R. Mesquita e L. C. Procópio. 1999. Flora da Reserva Ducke. Guia de identificação das plantas vasculares de uma floresta de terra firme na Amazônia Central. INPA-DFID. Manaus, Brasil. 800 p. Doi: 10.2307/4110841. DOI: https://doi.org/10.2307/4110841
Rocha-Loredo, A. G., N. Ramírez-Marcial y M. González-Espinosa. 2010. Riqueza y diversidad de árboles del bosque tropical caducifolio en la Depresión Central de Chiapas. Boletín de la Sociedad Botánica de México 87:89-103. Doi.org/10.17129/botsci.313. DOI: https://doi.org/10.17129/botsci.313
Samaniego, E., Y. García, D. Neill, Y. Arteaga, J. C. Vargas y L. Rojas. 2015. Diversidad florística de tres sitios de un bosque siempreverde piemontano de la región oriental amazónica del Ecuador. Revista Amazónica Ciencia y Tecnología 4:32-47. https://dialnet.unirioja.es/servlet/articulo?codigo=5271973 (5 de octubre de 2021).
Shepherd, G. J. 2010. Fitopac 2.1. Departamento de Botânica/UNICAMP. São Paulo, Brasil. http://m.pedroeisenlohr.webnode.com.br/fitopac/ (15 de octubre de 2021).
Siegmund, J., M. Wiedermann, J. Donges and R. Donner. 2016. Impact of temperatura and precipitation extremes on the flowering date of four German widlife shrub species. Biogeosciences 13:5541-5555. Doi:10.51914/bg-5541-2016. DOI: https://doi.org/10.5194/bg-13-5541-2016
Silva, C. V., J. R. dos Santos, L. S. Galvão, R. D. da Silva and Y.M. Moura. 2016. Floristic and structure of an Amazonian primary forest and a chronosequence of secondary succession. Acta Amazonica 46:133-150. Doi: 10.1590/1809-4392201504341. DOI: https://doi.org/10.1590/1809-4392201504341
Ureta, M. 2015. Aporte de biomasa aérea de las especies arbóreas de la familia Myristicaceae en los bosques amazónicos del Perú. Revista Biología Tropical (International Journal of Tropical Biology) 63:263-273. Doi:10.15517/RBT.V63I1.14254. DOI: https://doi.org/10.15517/rbt.v63i1.14254
Van Schaik, C. P., J. Terborgh and W. S. Joseph. 2003. The phenology of tropical forests: Adaptative significance and consequences for primary consumers. Annual Review of Ecology and Systematics 24:353-377. Doi:10.1146/annurev.es.24.110193.002033. DOI: https://doi.org/10.1146/annurev.es.24.110193.002033
Vásquez, R., R. Rojas y H. Van der Werff. 2010. Flora del Río Cenepa, Amazonas, Perú. Missouri Botanical Garden. St. Louis, MO, USA. 1557 p.
Wagner, F. H., Hérault, B., Rossi, V., Hilker, T., Maeda, E. E., Sanchez, A., Lyapustin, A. I., Galvão, L. S., Wang, Y. and Aragão, L. E. O. C. 2017. Climate drivers of the Amazon forest greening. PLos ONE 12(7): e0180932. Doi:10.1371/journal.pone.0180932. DOI: https://doi.org/10.1371/journal.pone.0180932
Wolkovich, E. M., B. I. Cook, J. M. Allen, T. M. Crimmins, J. L. Betancourt, S. E. Travers, S. Pau, J. Regetz, T. J. Davies, N. J. B. Kraft, T. R. Ault, K. Bolgren, S. J. Mazer, G. J. McCabe, B. J. McGill, C. Parmesan, N. Salamin, M. D. Schawartz and E. E. Cleland. 2012. Warming experiments underpredict plant phenological responses to climate change. Nature 485:494-497. Doi: 10.1038/nature11014. DOI: https://doi.org/10.1038/nature11014
Workie, T. G. and H. J. Debella. 2018. Climate change and its effects on vegetative phenology across ecoregions of Ethiopia. Global Ecology and Conservation 13:e00366. Doi:10.1016/j.gecco.2017.e00366. DOI: https://doi.org/10.1016/j.gecco.2017.e00366
Zhao, W., Z. Zhao, T. Zhou, D. Wu, B. Tang B and H. Wei. 2017. Climate factors driving vegetation declines in the 2005 and 2010 Amazon droughts. PLoS ONE 12(4):e0175379. Doi:10.1371/journal.pone.0175379. DOI: https://doi.org/10.1371/journal.pone.0175379

Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Mexicana de Ciencias Forestales

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Forestales accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Forestales recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Forestales (for example, include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Forestales.
For all the above, the authors shall send the form of Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: ciencia.forestal2@inifap.gob.mx
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.