Estimation of forest parameters using Sentinel 2A data in Pueblo Nuevo, state of Durango

Authors

DOI:

https://doi.org/10.29298/rmcf.v12i68.1075

Keywords:

English, Basimetric area, aboveground biomass, permanent plots, remote sensing, Sentinel, forest volume

Abstract

The temperate forests demand periodic monitoring in order to reach a sustainable management. The remote sensing makes it possible to indirectly generate estimates under the assumption of a statistical correlation between satellite data and forest parameters. The aim of this work was to estimate the basimetric area (G), the forest volume (Vta) and the aboveground biomass (W), using spectral data from the Sentinel 2A satellite in the San Bernardino de Milpillas Chico Community, Pueblo Nuevo, state of Durango. A correlation analysis was performed between mensuration information from 22 permanent plots for forest and soil research (SPIFyS) and high-resolution spectral information from the Sentinel 2A sensor. Subsequently, a multiple regression model was developed for each forest stand parameter. The highest correlation coefficient (r) was observed in the NDVI with values of 0.77, 0.68 and 0.76 for the forest parameters of Vta, G and W, respectively. The developed models explained 59 % of the total variance observed for Vta (RCME = m3 ha-1), 58 % for W (RCME = 39.29 Mg ha-1) and 51% for G (RCME = 4.40 m2 ha-1). The NDVI was the main predictive variable in three models. The Sentinel 2A data with a resolution of 10 m in combination with mensuration information from SPIFyS showed a good capacity for mapping forest stand parameters in temperate forests.

Downloads

Download data is not yet available.

Author Biographies

Pablito Marcelo López Serrano, español

Member of the SNI Level 1

Research Professor at the Institute of Forestry and Wood Industry

Forest Engineering from the Faculty of Forest Sciences of the UJED

Master in Management of natural resources from the Faculty of Agricultural and Forestry Sciences of the UACH

PhD in Agricultural and Forestry Sciences from the UJED

Research lines: Applications of Geomatics (remote sensing and GIS) in natural resources and land use planning. Use of drones in the analysis of ecosystems and management of natural resources.

Daniel José Vega Nieva, español

Member of the SNI Level 1
Research Professor at the Faculty of Forest Sciences of the UJED
Engineering at the University of Santiago de Compostela, Spain.
Master's degree at the University of Vigo, Spain.
PhD at the University of Vigo, Spain.
Post-doctorate at the University of Lisbon
Member of the national fire management network
Research lines: Geomatics applications (remote sensing and GIS) in forest fires. Forest Management. Biomass and bioenergy.

Hugo Ramírez Aldaba, español

Member of the SNI Level C
Research professor at the Faculty of Forest Sciences of the UJED.
Chemical Engineering by the Technological Institute of Durango
Master in Industrial Planning from the Technological Institute of Durango
PhD in Agricultural and Forestry Sciences from the UJED
Research lines: Bioremediation of contaminated mining soils, electrochemistry applied to contaminated soils and water, electrochemical characterization of minerals.

Emily García Montiel, español

Member of the SNI Level C
Head of the Division of postgraduate studies and research of the Faculty of Forest Sciences of the UJED
Bachelor of Foreign Trade and Customs from the UNIVER study center
Master of Administration from the Faculty of Economics, Accounting and Administration
PhD in Agricultural and Forestry Sciences from the UJED
Research lines: Forest certification, Socio-economic aspects of the forest sector and forest policy. Natural resource management

José Javier Corral Rivas, español

Member of the SNI Level 2
Research professor at the Faculty of Forest Sciences of the UJED.
Forest Engineering by the Technological Institute of El Salto
Master's degree from the Autonomous University of Nuevo León
PhD: University of Gottingen. Germany
Research lines: Management and conservation of natural resources. Biometrics

References

Acosta M., M. R., S. M. E. Pérez, Romero, H. A., González, y A. L. Martínez. 2017. Estimación de la densidad forestal mediante imágenes Landsat ETM+ en la región sur del Estado de México. Revista Mexicana de Ciencias Forestales 8(41): 30-55. Doi:10.29298/rmcf.v8i41.25. DOI: https://doi.org/10.29298/rmcf.v8i41.25

Aguirre-Salado, C. A., J. R. Valdez-Lazalde, G. Ángeles-Pérez, H. M. de los Santos-Posadas y A. I. Aguirre-Salado. 2011. Mapeo del índice de área foliar y cobertura arbórea mediante fotografía hemisférica y datos SPOT 5 HRG: regresión y k-nn. Agrociencia 45(1): 105-119. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952011000100010 (2 de marzo de 2021).

Asner G. P. and J. Mascaro. 2014. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment 140:614-624. Doi: 10.1016/j.rse.2013.09.023. DOI: https://doi.org/10.1016/j.rse.2013.09.023

Assmann, J. J., I. H. Myers-Smith, J. T. Kerby, A. M., Cunliffe and G. Daskalova. 2020. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environmental Research Letters 15(12): 125002. Doi: 10.1088/1748-9326/abbf7d.

Barajas F., H. 2007. Comparación entre análisis discriminante no-métrico y regresión logística multinomial. Tesis de Maestría, Facultad de Ciencias, Universidad Nacional de Colombia. Medellín, Colombia. 67 p.

Casella, A., N. Barrionuevo, A. Pezzola y C. Winschel. 2018. Preprocesamiento de imágenes satelitales del sensor Sentinel 2A y 2B con el software SNAP 6. 0. Instituto de Clima y Agua. CIRN INTA Castelar. Buenos Aires, Argentina. pp. 1-31.

Chrysafis, I., G. Mallinis, S. Siachalou and P. Patias. 2017. Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letters 8: 508-517. Doi: 10.1080/2150704X.2017.1295479. DOI: https://doi.org/10.1080/2150704X.2017.1295479

Chuvieco, E. 2002. Teledetección Ambiental. La observación de la Tierra desde el Espacio. Editorial Ariel. Barcelona, España. 616 p.

Corral-Rivas, J. J., B. Vargas L., C. Wehenkel, O. A. Aguirre C., J. G. Álvarez G. y A. Rojo A. 2009. Guía para el Establecimiento de Sitios de Investigación Forestal y de Suelos en Bosques del Estado de Durango. Editorial UJED. Durango, Dgo., México. 81 p.

Diéguez-Aranda, U., F. Castedo D. y J. Álvarez G. 2005. Funciones de crecimiento en área basimétrica para masas de Pinus sylvestris L. procedentes de repoblación en Galicia. Investigación Agraria. Sistemas y Recursos Forestales 14(2): 253-266. http://www.inia.es/gcontrec/pub/253-266-(143_04)-Funciones_1162281545765.pdf (2 de marzo de 2021). DOI: https://doi.org/10.5424/srf/2005142-00888

Dos R., A. A., M. C. Carvalho, J. M. De Mello, L. R. Gomide, A. C. Ferraz F. and F. W. A. Junior. 2018. Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data: an assessment of prediction methods. New Zealand Journal of Forestry Science 48(1): 1-17. Doi: https://doi.org/10.1186/s40490-017-0108-0. DOI: https://doi.org/10.1186/s40490-017-0108-0

Emborg, J. 1998. Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. Forest Ecology and Management 106: 83-95. Doi: 10.1016/S0378-1127(97)00299-5. DOI: https://doi.org/10.1016/S0378-1127(97)00299-5

Foody, G. M., D. S. Boyd and M. E. J. Cutler. 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment 85: 463-474. Doi:10.1016/S0034-4257(03)00039-7. DOI: https://doi.org/10.1016/S0034-4257(03)00039-7

Fuchs, H., P. Magdon, K. Kleinn and H. Flessa. 2009. Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory. Remote Sensing of Environment 113(3): 518-531. Doi:10.1016/j.rse.2008.07.017. DOI: https://doi.org/10.1016/j.rse.2008.07.017

Gadow, K. V., A. Rojo, G. Álvarez-González y R. Rodríguez-Soalleiro. 1999. Ensayos de crecimiento. Parcelas permanentes, temporales y de intervalo. Investigación Agraria. Sistemas y Recursos Forestales 1:299-310. https://recyt.fecyt.es/index.php/IA/article/view/2776 (2 de marzo de 2021).

Gadow, K. V., C. Y. Zhang, C. Wehenkel, A. Pommerening, J. Corral R., M. Korol and X. H. Zhao. 2012. Forest structure and diversity. In: Pukkala, T. and K. von Gadow (eds.). Continuous cover forestry. Springer. Dordrecht, Netherlands. pp. 29-83. Doi: 10.1007/978-94-007-2202-6_2. DOI: https://doi.org/10.1007/978-94-007-2202-6_2

Gibbons, J. D. and S. Chakraborti. 2003. Nonparametric Statistical Interference; Marcel Denker, Inc. New York, NY, USA. 645 p.

Graciano-Ávila, G., E. Alanís-Rodríguez, O. A. Aguirre-Calderón, M. González-Tagle, E. J. Treviño-Garza, A. Mora-Olivo y E. Buendía-Rodríguez. 2019. Estimación de volumen, biomasa y contenido de carbono en un bosque de clima templado-frío de Durango, México. Revista Fitotecnia Mexicana 42(2): 119-127. http://www.scielo.org.mx/pdf/rfm/v42n2/0187-7380-rfm-42-02-119.pdf (2 de marzo de 2021).

Hall, R. J., R. S. Skakun, E. J. Arsenault and B. S. Case. 2006. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. Forest Ecology and Management 225: 378-390. Doi: 10.1016/j.foreco.2006.01.014. DOI: https://doi.org/10.1016/j.foreco.2006.01.014

Hawryło, P., B. Bednarz, P. Wężyk and M. Szostak. 2018. Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. European Journal of Remote Sensing 51(1): 194-204. Doi:https://doi.org/10.1080/22797254.2017.1417745. DOI: https://doi.org/10.1080/22797254.2017.1417745

Hernández-Ramos, J., X. García-Cuevas, R. Peréz-Miranda, A. González-Hernández y L. Martínez-Ángel. 2020. Inventario y mapeo de variables forestales mediante sensores remotos en el estado de Quintana Roo, México. Madera y Bosques 26(1):e2611884. Doi:10.21829/myb.2020.2611884.

Herold, M., R. M. Román-Cuesta, D. Mollicone, Y. Hirata, P. Van Laake, G. P. Asner, C. Souza, M. Skutsch, V. Avitabile and K. Macdicken. 2011. Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance and Management 6: 1-13. Doi:10.1016/j.rse.2009.08.014. DOI: https://doi.org/10.1186/1750-0680-6-13

Hijmans, R. J. 2020. Raster: Geographic Data Analysis and Modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (9 de abril de 2021).

Hu, Y., X. Xu, F. Wu, Z. Sun, H. Xia, Q. Meng and X. Xiao. 2020. Estimating forest stock volume in Hunan Province, China, by integrating in situ plot data, Sentinel-2 images, and linear and machine learning regression models. Remote Sensing 12(1): 186. Doi:10.3390/rs12010186.

Instituto Nacional de Estadística y Geografía (Inegi). 2017a. Anuario estadístico y geográfico de Durango. https://www.datatur.sectur.gob.mx/ITxEF_Docs/DGO_ANUARIO_PDF.pdf (15 de julio de 2020).

Instituto Nacional de Estadística y Geografía (Inegi). 2017b. Conjunto de datos vectoriales de uso del suelo y vegetación Escala 1: 250 000. Serie VI (Conjunto nacional). URL: http://www.conabio.gob.mx/informacion/metadata/gis/usv250s6gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no (2 de marzo de 2021).

Karjalainen, M., V. Kankare, M. Vastaranta, M. Holopainen and J. Hyyppa. 2012. Prediction of plot-level forest variables using TerraSAR-X stereo SAR data. Remote Sensing of Environment 117: 338–347. Doi:10.1016/j.rse.2011.10.008. DOI: https://doi.org/10.1016/j.rse.2011.10.008

López-Serrano, P. M., C. A. López S., R. Solís-Moreno and J. J. Corral-Rivas. 2016. Geospatial estimation of above ground forest biomass in the Sierra Madre Occidental in the state of Durango, Mexico. Forests 7(3): 70. Doi:10.3390/f7030070. DOI: https://doi.org/10.3390/f7030070

López-Serrano, P. M., C. A. López-Sánchez, J. G. Álvarez-González and J. Garcíaa-Gutiérrez. 2016. A comparison of machine learning techniques applied to landsat-5 TM spectral data for biomass estimation. Canadian Journal of Remote Sensing 42(6): 690-705. Doi: 10.1080/07038992.2016.1217485. DOI: https://doi.org/10.1080/07038992.2016.1217485

López-Serrano, P. M., J. L. Cárdenas D., J. J. Corral-Rivas, E. Jiménez, C. A. López-Sánchez and D. J. Vega-Nieva. 2020. Modeling of aboveground biomass with Landsat 8 OLI and machine learning in temperate forests. Forests 11(1): 11. Doi:10.3390/f11010011.

Louis, J., V. Debaecker, B. Pflug, M. Main-Knorn, J. Bieniarz, J., U. Mueller-Wilm and F. Gascon. 2016. Sentinel-2 Sen2Cor: L2A processor for users. In: Proceedings Living Planet Symposium. 9-13 May 2016. Prague, Czech Republic. 8 p.

Lu, D., P. Mausel, E., Brondízio and E. Moran. 2004. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management 198: 149-167. Doi: 10.1016/j.foreco.2004.03.048. DOI: https://doi.org/10.1016/j.foreco.2004.03.048

Miranda-Aragón, L., E. J. Treviño-Garza, J. Jiménez-Pérez, O. A. Aguirre-Calderón, M. A. González-Tagle, M. Pompa-García y C. A. Aguirre-Salado. 2013. Tasa de deforestación en San Luis Potosí, México (1993-2007). Revista Chapingo Serie Ciencias Forestales y del Ambiente 19(2): 201-215. Doi:10.5154/r.rchscfa.2011.06.044. DOI: https://doi.org/10.5154/r.rchscfa.2011.06.044

Myers-Smith, I.H., J. T. Kerby, G. K. Phoenix, J. W. Bjerke, H. E. Epstein, J. J. Assmann, C. J., L Andreu-Hayles, S. Angers-Blondin, P. S. A. Beck, L. T. Berner, U. S. Bhatt, A. D. Bjorkman, D. Blok, A. Bryn, C. T. Christiansen, J. H. C. Cornelissen, A. M. Cunliffe, S. C. Elmendorf, B. C. Forbes, S. J. Goetz, R. D. Hollister, R. Jong, M. M. Loranty, M. Macias-Fauria, K. Maseyk, S. Normand, J. Olofsson, T. C. Parker, F. W. Parmentier, E. Post, G. Schaepman-Strub, F. Stordal, P. F. Sullivan, H. J. D. Thomas, H. Tømmervik, R. Treharne, C. E. Tweedie, D. A. Walker, M. Wilmking and S. Wipf. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10(2): 106-117. Doi:10.1038/s41558-019-0688-1.

Pebesma, E. J. 2004. Multivariable geostatistics in S: the gstat package. Computers and Geosciences 30: 683-691. Doi: 10.1016/j.cageo.2004.03.012. DOI: https://doi.org/10.1016/j.cageo.2004.03.012

Pham, T., N. Yokoya, D. Bui, K. Yoshino and D. Friess. 2019. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing 11:230. Doi: 10.3390/rs11030230.

Ripley, B. 2020. MASS: Support Functions and Datasets for Venables and Ripley’s Mass. https://CRAN.R-project.org/package=MASS (2 de marzo de 2021).

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (9 de abril de 2021).

Secretaría de Recursos Naturales y Medio Ambiente (SRNyMA). 2016. Programa Estratégico Forestal 2030. Gobierno del Estado de Durango. Durango, Dgo., México. 200 p.

Segura, M. R. y G. Trincado. 2003. Cartografía digital de la Reserva Nacional Valdivia a partir de imágenes satelitales Landsat TM. Bosque (Valdivia) 24(2):43-52. Doi: https://dx.doi.org/10.4067/S0717-92002003000200005. DOI: https://doi.org/10.4067/S0717-92002003000200005

Simental-Cano, B., C. A. López-Sánchez, C. Wehenkel, B. Vargas-Larreta, J. G. Álvarez-González and J. J. Corral-Rivas. 2017. Species-specific and regional volume models for 12 forest species in Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 3(2): 155-171. Doi: 10.5154/r.rchscfa.2016.01.004. DOI: https://doi.org/10.5154/r.rchscfa.2016.01.004

Sobrino J., A., R. Llorens, C. Fernández, J. M. Fernández A. and A. Vega J. 2019. Relationship between soil burn severity in forest fires measured in situ and through spectral indices of remote detection. Forests 10(5): 457. Doi: 10.3390/f10050457.

Song, C. 2013. Optical remote sensing of forest leaf area index and biomass. Progress in Physical Geography 37: 98-113. Doi: 10.1177/0309133312471367. DOI: https://doi.org/10.1177/0309133312471367

Toledo, M., L. Poorter, M. P. Claros, A. Alarcon, J. Balcázar, C. Leaño, J. C. Licona, O. Llanque, V. Vroomans, P. Zuidema and F. Bongers. 2011. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology 99(1): 254-264. Doi: 10.1111/j.1365-2745.2010.01741.x. DOI: https://doi.org/10.1111/j.1365-2745.2010.01741.x

Tomppo, E., Th. Gschwantner, M. Lawrence and E. McRoberts. 2010. National Forest Inventories – Pathways for Common Reporting. Springer book series Managing Forest Ecosystems. Viena, Austria. 612 p. Doi: 10.1007/978-90-481-3233-1. DOI: https://doi.org/10.1007/978-90-481-3233-1

Torres-Rojas, G., M. E. Romero-Sánchez, E. Velasco-Bautista y A. González-Hernández. 2016. Estimación de parámetros forestales en bosques de coníferas con técnicas de percepción remota. Revista Mexicana de Ciencias Forestales 7(36): 7-24. Doi:10.29298/rmcf.v7i36.56. DOI: https://doi.org/10.29298/rmcf.v7i36.56

Torres-Vivar, J. E., J. J. Valdez-Lazalde, G. Ángeles P., H. M. Santos-Posadas y C. A. Aguirre-Salado. 2017. Inventario y mapeo de un bosque bajo manejo de pino con datos del sensor SPOT 6. Revista Mexicana de Ciencias Forestales 8(39): 25-43. Doi:10.29298/rmcf.v8i39.41. DOI: https://doi.org/10.29298/rmcf.v8i39.41

Vargas-Larreta, B., C. A. López-Sánchez, J. J. Corral-Rivas, J. O. López-Martínez, C. G. Aguirre-Calderón and J. G. Álvarez-González. 2017. Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8(8): 269. Doi: 10.3390/f8080269. DOI: https://doi.org/10.3390/f8080269

Verbesselt, J., R. Hyndman, G. Newnham and D. Culvenor. 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment 114: 106–115. Doi: https:10.1016/j.rse.2009.08.014. DOI: https://doi.org/10.1016/j.rse.2009.08.014

Wulder, M. A., S. M. Ortlepp, J. C. White and S. Maxwell. 2014. Evaluation of Landsat-7 SLC-off image products for forest change detection. Canadian Journal of Remote Sensing 34(2): 93-99. Doi: 10.5589/m08-020. DOI: https://doi.org/10.5589/m08-020

Published

2021-11-05

How to Cite

López Serrano, Pablito Marcelo, Daniel José Vega Nieva, Hugo Ramírez Aldaba, Emily García Montiel, and José Javier Corral Rivas. 2021. “Estimation of Forest Parameters Using Sentinel 2A Data in Pueblo Nuevo, State of Durango”. Revista Mexicana De Ciencias Forestales 12 (68). México, ME:81-106. https://doi.org/10.29298/rmcf.v12i68.1075.

Issue

Section

Scientific article