Modelling diameter distribution of natural forest in Pueblo, Nuevo, Durango
DOI:
https://doi.org/10.29298/rmcf.v13i73.1187Keywords:
Two-parameter Weibull function, parameter recovery method, sampling plotsAbstract
The diameter distributions are an important factor in the stand characterization because the diameter is generally correlated with other variables such height, volume, biomass and this allow to know the kind products that can harvested from forests. The objective of this research was to develop a strategy to fit the Weibull, Beta and SB Johnson PDFs and reconstruct (modelling) the future diameter distribution with the parameter recovery method. In a first phase the goodness-of-fit of three probability distribution functions -PDF- (Weibull, Johnson’s SB, and Beta) was evaluated using the moments and the maximum likelihood methods to estimate the distribution parameters of 2 252 temporary sampling plots distributed in natural forests in Pueblo Nuevo, Durango, Mexico. In general, the best results in terms of accuracy and parsimony during the model fitting evaluated with the bias and the root mean square error were obtained with the Weibull’s PDF, fitted with the moments method was the best, while Johnson’s SB, and Beta were ranked in second and third position, respectively. Therefore, the two-parameters Weibull’s PDF was selected to describe the diameter distributions of the studied forest stands. The recovery parameters method suggested that a 62 % of evaluated sampling plots followed a Weibull distribution at 20 % of significance level with the Kolmogorov-Smirnov test.
Downloads
References
Assmann, E. 1979. The principles of forest yield study: studies in the organic production, structure, increment and yield of forest stands. Pergamon Press. New York, NY, USA. 506 p.
Bailey, R. L. and T. R, Dell. 1973. Quantifying diameter distributions with the Weibull function. Forest Science 19:97 104. Doi: 10.1093/forestscience/19.2.97.
Cao, Q. V. 2004. Predicting parameters of a Weibull function for modeling diameter distribution. Forest Science 50:682 685. Doi: 10.1093/forestscience/50.5.682.
Corral-Rivas, S., J. G. Álvarez G., J. J. Corral R. and C. A. López S. 2015. Characterization of diameter structures of natural forests of northwest of Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 21(2):221 236. Doi: 10.5154/r.rchscfa.2014.10.046. DOI: https://doi.org/10.5154/r.rchscfa.2014.10.046
Delignette, M. L. and C. Dutang. 2015. Fitdistrplus: An R package for fitting distributions. Journal of Statistical Software 64(4):1 34. https://www.jstatsoft.org/article/view/v064i04. (20/06/2022). DOI: https://doi.org/10.18637/jss.v064.i04
Frazier, J. R. 1981. Compatible whole-stand and diameter distribution models for loblolly pine. PhD thesis, School of Forestry and Wildlife, Virginia Polytechnic Institute and State University, Blackburg, VA, USA. 125 p.
García, M. E. 1981. Modificaciones al sistema de clasificación climática de Köppen (4ª ed.). Instituto de Geografía, Universidad Nacional Autónoma de México. México, D. F. México. 91 p.
González-Elizondo, M. S., M. González E., J. A. Tena F., L. Ruacho G., y I. L. López E. 2012. Vegetación de la sierra madre occidental, México: Una síntesis. Acta Botánica Mexicana 100:351 403. Doi: 10.21829/abm100.2012.40. DOI: https://doi.org/10.21829/abm100.2012.40
Gorgoso, V. J. J., A. Rojo A., A. Camara O., and U. Diéguez A. 2012. A comparison of estimation methods for fitting Weibull, Johnson’s SB and beta functions to Pinus pinaster, Pinus radiata and Pinus sylvestris stands in northwest Spain. Forest Systems 21(3):446 459. Doi: 10.5424/fs/2012213-02736. DOI: https://doi.org/10.5424/fs/2012213-02736
Gorgoso, V. J. J., Ogana, F. N., and P. O. Ige. 2020. A comparison between derivative and numerical optimization methods used for diameter distribution estimation, Scandinavian Journal of Forest Research 35(3 4):1 9. Doi: 10.1080/02827581.2020.1760343. DOI: https://doi.org/10.1080/02827581.2020.1760343
Hyink, D. M. and J. W. Moser Jr. 1983. A generalized framework for projecting forest yield and stand structure using diameter distributions. Forest Science 29(1):85 95. Doi: 10.1093/forestscience/29.1.85.
Jiang, L. and J. Brooks. 2009. Predicting diameter distributions for young longleaf pine plantations in Southwest Georgia. Southern Journal of Applied Forestry 33:25 28. Doi: 10.1093/sjaf/33.1.25. DOI: https://doi.org/10.1093/sjaf/33.1.25
Johnson, N. L. 1949. Systems of frequency curves generated by methods of translation. Biometrika 36(1):149 176. Doi: 10.2307/2332539. DOI: https://doi.org/10.1093/biomet/36.1-2.149
Lei, Y. 2008. Evaluation of three methods for estimating the Weibull distribution parameters of Chinese pine (Pinus tabulaeformis). Journal of Forest Science 54(12):566 571. http://81.0.228.28/publicFiles/02858.pdf. (25/06/2022). DOI: https://doi.org/10.17221/68/2008-JFS
Liu, C., S. Y. Zhang., Y. Lei., P. F. Newton and L. Zhang. 2004. Evaluation of three methods for predicting diameter distributions of black spruce (Picea mariana) plantations in central Canada. Canadian Journal of Forest Research 34(12):2424 2432. Doi: 10.1139/x04-117. DOI: https://doi.org/10.1139/x04-117
Loetsch, F., F. Zöhrer and K. E. Haller. 1973. Forest inventory 2. Verlagsgesellschaft. BLV. Munich, Germany. 469 p.
Maldonado, D., y J. J. Návar. 2002. Ajuste y predicción de la distribución Weibull a las estructuras diamétricas de plantaciones de pino de Durango, México. Madera y Bosques 8(1):61 72. Doi: 10.21829/myb.2002.811306. DOI: https://doi.org/10.21829/myb.2002.811306
Nanos, N., and G. Montero. 2002. Spatial prediction of diameter distributions models. Forest Ecology and Management 161(1 3):147 158. Doi: 10.1016/S0378-1127(01)00498-4. DOI: https://doi.org/10.1016/S0378-1127(01)00498-4
Ogana, F. N. 2020. A percentile-based estimator for the log-logistic function: Application to forestry. Forestry Studies 72(1):107 120. Doi: 10.2478/fsmu-2020-0009. DOI: https://doi.org/10.2478/fsmu-2020-0009
Palahí, M., T. Pukkala and A. Trasobares. 2006. Modelling the diameter distribution of Pinus sylvestris, Pinus nigra and Pinus halepensis forest stands in Catalonia using the truncated Weibull function. Forestry 79(5):553 562. Doi: 10.1093/forestry/cpl037. DOI: https://doi.org/10.1093/forestry/cpl037
Pece, M. G., C. G. de Benítez y M. J. de Galíndez. 2000. Uso de la función Weibull para modelar distribuciones diamétricas en una plantación de Melia azedarach. Revista Forestal Venezolana 44(2):49 52. https://biblat.unam.mx/es/revista/revista-forestal-venezolana/articulo. (25/06/2022).
Pogoda, P., W. Ochal., and S. Orzel. 2019. Modeling diameter distribution of Black Alder (Alnus glutinosa (L.) Gaertn.) Stands in Poland. Forests 10(5):1 16. Doi: 10.3390/f10050412. DOI: https://doi.org/10.3390/f10050412
Quiñonez, B. G., H. M. P. De los Santos, F. Cruz C., M. A. Velázquez y V. G. Ramírez. 2015. Modelación dinámica de distribuciones diamétricas en masas mezcladas de Pinus en Durango, México. Madera y Bosques 21(2):59 71. Doi: 10.21829/myb.2015.212445. DOI: https://doi.org/10.21829/myb.2015.212445
R Core Team. 2020. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.Rproject.org/. (12/05/2020)
Reynolds, M. R., T. E. Burk and W. C. Huang. 1998. Goodness-of-fit tests and model selection procedures for diameter distribution models. Forest Science 34(2):373 399. Doi: 10.1093/forestscience/34.2.373.
Sandoval, S., J. Cancino., R. Rubilar., E. Esquivel., E. Acuña., F. Muñoz. and M. Espinosa. 2012. Probability distributions in high-density dendroenergy plantations. Forest Science 58(6):663 672. Doi: 10.5849/forsci.11-028. DOI: https://doi.org/10.5849/forsci.11-028
Scolforo, J. R. S., F. C. Vitti, R. L. Grisi, F. Acerbi and A. L. De Assis. 2003. SB distribution´s accuracy to represent the diameter distribution of Pinus taeda, through five fitting methods. Forest Ecology and Management 175(1 3):489 496. Doi: 10.1016/S0378-1127(02)00183-4. DOI: https://doi.org/10.1016/S0378-1127(02)00183-4
Secretaría del Medio Ambiente y Recursos Naturales [SEMARNAT]. 2016. Anuario Estadístico de la Producción Forestal. Dirección General de Gestión Forestal y de Suelos. México D.F. https://www.gob.mx/semarnat/documentos/anuarios-estadisticos-forestales (24/60/2022).
Sghaier, T., I. Cañellas., R. Calama and M. Sánchez G. 2016. Modelling diameter distribution of Tetraclinis articulata in Tunisia using normal and Weibull distributions with parameters depending on stand variables. iForest – Biogeosciences and Forestry 9(5):702 709. Doi: 10.3832/ifor1688-008. DOI: https://doi.org/10.3832/ifor1688-008
Shifley, S. R. and E. L. Lentz. 1985. Quick estimation of the three parameter Weibull to describe tree size distributions. Forest Ecology and Management 13(3 4):195 203. Doi: 10.1016/0378-1127(85)90034-9. DOI: https://doi.org/10.1016/0378-1127(85)90034-9
Siipilehto, J. and L. Mehtätalo. 2013. Parameter recovery vs. parameter prediction for the Weibull distribution validated for Scots pine stands in Finland. Silva Fennica 47(4):1 22. Doi: 10.14214/sf.1057. DOI: https://doi.org/10.14214/sf.1057
Sokal, R. and F. Rohlf. 2012. Biometry. The principles and practice of statistics in biological research. 4th edition. W.H. Freeman and Company. NY, USA. 915 p.
Sun, S., Q. V. Cao and T. Cao. 2019. Characterizing diameter distributions for uneven-aged pine-oak mixed forests in the Qinling Mountains of China. Forests 10(7):596. Doi: 10.3390/f10070596. DOI: https://doi.org/10.3390/f10070596
Wang, M. and K. Rennolls. 2005. Tree diameter distribution modeling: Introducing the logit – logistic distribution. Canadian Journal of Forest Research 35(6):1305–1313. Doi: 10.1139/x05-057. DOI: https://doi.org/10.1139/x05-057

Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ciencias Forestales

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Forestales accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Forestales recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Forestales (for example, include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Forestales.
For all the above, the authors shall send the form of Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: ciencia.forestal2@inifap.gob.mx
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.