3PG model to estimate the productivity, Carbon storage and Aridity Index of Eucalyptus L'Hér. forest plantations in Mexico

Authors

DOI:

https://doi.org/10.29298/rmcf.v16i87.1474

Keywords:

modelo ecofisiológico, modelaje basado en procesos, incremento medio anual, productividad, aptitud para plantaciones, balance hídrico

Abstract

One of the most efficient ways to mitigate climate change is through the sequestration and storage of carbon through forest plantations, which, in addition to storing it, can generate a change in the soil water balance; therefore, the two parameters, evaluated together, generate valuable information. The objective of this work was to estimate carbon storage and the Aridity Index (evapotranspiration/precipitation) utilizing ecophysiological modeling (3PG model) for eucalyptus plantations in Mexico, and the main factors influencing evapotranspiration and Carbon storage were identified. From a practical point of view, maps were drawn showing the suitability of the land for eucalyptus plantations. The estimated average achievable productivity was 55 m3 ha-1 yr-1, with a variation of 18 to 117 m3 ha-1 yr-1; while, the above-ground Carbon storage was 26 to 288 t ha-1 at six years, with an average of 80 t ha-1. Evapotranspiration ranged from 426 to 1 713 mm yr-1 (average 1 053 mm yr-1), which resulted in an Aridity Index of 0.61 to 8.87. The main variables controlling productivity, Carbon stock, and the Aridity Index in Mexico are precipitation and latitude. The suitability maps for eucalyptus plantations in Mexico showed areas of high and very high suitability totaling 1.4 million hectares, confirming the country's enormous potential for developing eucalyptus plantations.

Downloads

Download data is not yet available.

References

Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations. https://www.researchgate.net/publication/235704197_Crop_evapotranspiration-Guidelines_for_computing_crop_water_requirements-FAO_Irrigation_and_drainage_paper_56

Alvares, C. A. (2011). Mapeamento e modelagem edafoclimática da produtividade de plantações de Eucalyptus no sul do estado de São Paulo [Tesis doctoral, Universidad de Sao Paulo]. Biblioteca Digital USP. https://doi.org/10.11606/T.11.2011.tde-23052011-161837 DOI: https://doi.org/10.11606/T.11.2011.tde-23052011-161837

Baillie, I. C. (2001). Book review. Soil Survey Staff 1999, Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys, 2nd edition. Agricultural Handbook 436, Natural Resources Conservation Service, USDA. Washington DC, United States of America, 869 p. Soil Use and Management, 17(1), 57-60. https://doi: 10.1111/j.1475-2743.2001.tb00008.x DOI: https://doi.org/10.1111/j.1475-2743.2001.tb00008.x

Binkley, D. (2021). Forest Ecology: An Evidence-Based Approach. Wiley-Blackwell.

Campoe, O., Alvares, C., Carneiro, R., Binkley, D., Ryan, M., Hubbard, R., Stahl, J., Moreira, G., Moraes, L. F. & Stape, J. L. (2020). Climate and genotype influences on carbon fluxes and partitioning in Eucalyptus plantations. Forest Ecology and Management, 475, Article 118445. https://doi.org/10.1016/j.foreco.2020.118445 DOI: https://doi.org/10.1016/j.foreco.2020.118445

Comisión Nacional Forestal. (2022). Áreas Elegibles 2022: Programa S219 Apoyos para el Desarrollo Forestal Sustentable. Estructura de Datos Espaciales Forestales. https://idefor.cnf.gob.mx/mviewer/AE_2022

Comisión Nacional Forestal. (2023). Programa Anual de Trabajo 2023. Secretaria de Medio Ambiente y Recursos Naturales. https://www.conafor.gob.mx/transparencia/docs/2023/Programa_Anual_de_Trabajo_2023.pdf

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2021). Sistema Nacional de Información sobre Biodiversidad. Portal de Geoinformación 2022. http://www.conabio.gob.mx/informacion/gis

Coops, N. C. & Waring, R. H. (2011). A process-based approach to estimate lodgepole pine (Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change. Climatic Change, 105, 313-328. https://doi.org/10.1007/s10584-010-9861-2 DOI: https://doi.org/10.1007/s10584-010-9861-2

Dumollard, G. (2018). Multiple-stand forest management under fire risk: Analytical characterization of stationary rotation ages and optimal carbon sequestration policy. Journal of Forest Economics, 32(1), 146-154. http://dx.doi.org/10.1016/j.jfe.2018.06.002 DOI: https://doi.org/10.1016/j.jfe.2018.06.002

Ferraz, S. F. de B., Rodríguez, C. B., Garcia, L. G., Alvares, C. A. & Lima, W. de P. (2019). Effects of Eucalyptus plantations on streamflow in Brazil: moving beyond the water use debate. Forest Ecology and Management, 453, Article 117571. https://doi.org/10.1016/j.foreco.2019.117571 DOI: https://doi.org/10.1016/j.foreco.2019.117571

Food and Agriculture Organization of the United Nations. (2018). The State of the World’s Forests: Forest pathways to sustainable development. http://www.fao.org/3/ca0188en/ca0188en.pdf

Food and Agriculture Organization of the United Nations. (2020). Global Forest Resources Assessment 2020. Key findings. https://openknowledge.fao.org/server/api/core/bitstreams/9f24d451-2e56-4ae2-8a4a-1bc511f5e60e/content

Food and Agriculture Organization of the United Nations. (2022). The State of the World’s Forests 2022: Forest pathways for green recovery and building inclusive, resilient and sustainable economies. https://openknowledge.fao.org/server/api/core/bitstreams/f81551bf-0a78-498b-a0a6-17f21467389d/content

Gonçalves, J., Alvares, C., Higa, A., Silva, L., Alfenas, A., Stahl, J., Ferraz, S., Lima, W., Brancalion, P., Hubner, A., Bouillet, J., Laclau, J., Nouvellon, Y. & Epron, D. (2013). Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology and Management, 301, 6-27. https://doi.org/10.1016/j.foreco.2012.12.030 DOI: https://doi.org/10.1016/j.foreco.2012.12.030

Gonçalves, J., Alvares, C., Rocha, J., Brandani, C. & Hakamada, R. (2017). Eucalypt plantation management in regions with water stress. Southern Forests: a Journal of Forest Science, 79(3), 169-183. https://doi.org/10.2989/20702620.2016.1255415 DOI: https://doi.org/10.2989/20702620.2016.1255415

Guevara-Escobar, A., Cervantes-Jiménez, M. y Suzán-Azpiri, H. (2020). Uso del modelo 3-PG para la predicción de biomasa de eucalipto en Jalisco, México. Madera y Bosques, 26(1), 1-15. https://doi.org/10.21829/myb.2020.2611876 DOI: https://doi.org/10.21829/myb.2020.2611876

Hakamada, R. E., Hubbard, R. M., Stape, J. L., Lima, W., Gonçalves M., G. & de Barros F., S. F. (2020). Stocking effects on seasonal tree transpiration and ecosystem water balance in a fast-growing Eucalyptus plantation in Brazil. Forest Ecology and Management, 466, Article 118149. https://doi.org/10.1016/j.foreco.2020.118149 DOI: https://doi.org/10.1016/j.foreco.2020.118149

Hyams Development. (2010). CurveExpert software. http://www.curveexpert.net

Indústria Brasileira de Ávores. (2020). 2020 Relatório Anual (Annual Report). https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf

Landsberg, J. & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209-228. https://doi.org/10.1016/S0378-1127(97)00026-1 DOI: https://doi.org/10.1016/S0378-1127(97)00026-1

Lemos, C. C. Z., Hakamada, R. E., Carrero, O., Alvares, C. A. & Stape, J. L. (2018). Estimação, zoneamento e análise de sensibilidade da produtividade florestal de Eucalyptus no Nordeste do Estado de São Paulo através do modelo 3-PG. Scientia Forestalis, 46(119), 459-471. https://doi.org/10.18671/scifor.v46n119.13 DOI: https://doi.org/10.18671/scifor.v46n119.13

Marques C., D. R., Alcarde A., C., Camargo C., O., Hakamada, R. E., Guerrini, I. A., Ramos C., I. & Stape, L. J. (2020). Multisite evaluation of the 3-PG model for the highest phenotypic plasticity Eucalyptus clone in Brazil. Forest Ecology and Management, 462, Article 117989. https://doi.org/10.1016/j.foreco.2020.117989 DOI: https://doi.org/10.1016/j.foreco.2020.117989

Monreal R., S. B. (2022). Plantaciones Forestales Maderables en México: Desarrollo histórico, situación actual y perspectivas. Bozkia.

National Aeronautics and Space Administration. (2021). The Power Project. NASA Prediction on Worldwide Energy Resources. https://power.larc.nasa.gov/

Nyland, R. D., Kenefic, L. S., Bohn, K. K. & Stout, S. L. (2016). Silviculture: concepts and applications (3rd ed.). Waveland Press Inc.

O’Donoghue, C., O’Fatharta, E., Geoghegan, C. & Ryan, M. (2024). Farmland afforestation: Forest optimal rotation ages across discrete optimisation objectives. Land Use Policy, 139, Article 107091. https://doi.org/10.1016/j.landusepol.2024.107091 DOI: https://doi.org/10.1016/j.landusepol.2024.107091

Palma, J. H. N., Hakamada, R., Gonçalves M., G., Nobre, S. & Rodriguez, L. C. (2021). Using 3PG to assess climate change impacts on management plan optimization of Eucalyptus plantations. A case study in Southern Brazil. Scientific Reports, 11(1), Article 2708. https://doi.org/10.1038/s41598-021-81907-z DOI: https://doi.org/10.1038/s41598-021-81907-z

Pörtner, H., Roberts, D., Adams, H., Adelekan, I., Adler, C., Adrian, R., Aldunce, P., Ali, E., Begum, R., Bednar-Friedl, B., Kerr, R., Biesbroek, R., Birkmann J., Bowen K., Caretta, M., Carnicer, J., Castellanos, E., Cheong, T., Chow, W.,… Ibrahim, Z. (2022). Technical Summary. In H. Pörtner, D. Roberts, H. Adams, C. Adelekan, R. Adler, P. Adrian, E. Aldunce, R. Ali, R. Begum, B. Bednar-Friedl, K. Bezner, K. & R. Biesbroek (Eds.). Climate change 2022: impacts, adaptation and vulnerability, contribution of Working Group II to the sixth assessment report of the intergovernmental panel on climate change (pp. 37-118). Cambridge University Press. DOI: https://doi.org/10.1017/9781009325844.002

Queiroz, T. B., Campoe, O. C., Montes, C. R., Alvares, C. A., Cuartas, M. Z. & Guerrini, I. A. (2020). Temperature thresholds for Eucalyptus genotypes growth across tropical and subtropical ranges in South America. Forest Ecology and Management, 472, Article 118248. https://doi.org/10.1016/j.foreco.2020.118248 DOI: https://doi.org/10.1016/j.foreco.2020.118248

R Core Team. (2021). R: A language and environment for statistical computing. The R Project for Statistical Computing. https://www.R-project.org/

Roldán C., M. A. (2013). Inventario forestal y crecimiento maderable de Eucalyptus urophylla en la empresa Forestaciones Operativas de México [Tesis doctoral, Colegio de Postgraduados, Campus Montecillo]. Colpos digital. http://colposdigital.colpos.mx:8080/xmlui/bitstream/handle/10521/1980/Roldan_Cortes_MA_DC_Forestal_2013.pdf?sequence=1&isAllowed=y

Sands, P. J. & Landsberg, J. J. (2002). Parametrization of 3-PG for plantation grown Eucalyptus globulus. Forest Ecology and Management, 163(1-3), 273-292. https://doi.org/10.1016/S0378-1127(01)00586-2 DOI: https://doi.org/10.1016/S0378-1127(01)00586-2

Scolforo, H. F., McTague, J. P., Burkhart, H., Roise, J., Carneiro, R. L. & Stape, J. L. (2019). Generalized stem taper and tree volume equations applied to eucalyptus of varying genetics in Brazil. Canadian Journal of Forest Research, 49(5), 447-462. https://doi.org/10.1139/cjfr-2018-0276 DOI: https://doi.org/10.1139/cjfr-2018-0276

Stape, J. L. (2002). Production ecology of clonal Eucalyptus plantations in northeastern Brazil. [Tesis doctoral, Universidad de São Paulo]. Repositorio USP. https://repositorio.usp.br/item/001263549

Stape, J. L., Binkley, D. & Ryan, M. G. (2004). Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management, 193(1-2), 17-31. https://doi.org/10.1016/j.foreco.2004.01.020 DOI: https://doi.org/10.1016/j.foreco.2004.01.020

Trotsiuk, V., Hartig, F. & Forrester, D. I. (2020). r3PG–An R package for simulating forest growth using the 3-PG process-based model. Methods in Ecology and Evolution, 11(11), 1470-1475. https://doi.org/10.1111/2041-210X.13474 DOI: https://doi.org/10.1111/2041-210X.13474

van Dijk, A. & Keenan, R. (2007). Planted forests and water in perspective. Forest Ecology and Management, 251(1), 1-9. https://doi.org/10.1016/j.foreco.2007.06.010 DOI: https://doi.org/10.1016/j.foreco.2007.06.010

Whitehead, D. & Beadle, C. L. (2004). Physiological regulation of productivity and water use in Eucalyptus: a review. Forest Ecology and Management, 193(1-2), 113-140. https://doi.org/10.1016/j.foreco.2004.01.026 DOI: https://doi.org/10.1016/j.foreco.2004.01.026

Xie, Y., Wang, H. & Lei, X. (2020). Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in northeast China using 3-PGmix model. Journal of Environmental Management, 261, Article 110249. https://doi.org/10.1016/j.jenvman.2020.110249 DOI: https://doi.org/10.1016/j.jenvman.2020.110249

Zhang, Y. & Wang, X. (2021). Geographical spatial distribution and productivity dynamic change of Eucalyptus plantations in China. Scientific Reports, 11, Article 19764. https://doi.org/10.1038/s41598-021-97089-7 DOI: https://doi.org/10.1038/s41598-021-97089-7

Published

2024-12-19

How to Cite

Hakamada, Rodrigo, Jesús Prados Coronado, Cassiano José Lages Marinho Falcão, Omar Carrero, and Belkis Coromoto Sulbarán Rangel. 2024. “3PG Model to Estimate the Productivity, Carbon Storage and Aridity Index of Eucalyptus L’Hér. Forest Plantations in Mexico”. Revista Mexicana De Ciencias Forestales 16 (87). México, ME:127-52. https://doi.org/10.29298/rmcf.v16i87.1474.

Issue

Section

Scientific article