Spatial modeling of Guazuma ulmifolia Lam. in the face of climate change in Mexico

Authors

DOI:

https://doi.org/10.29298/rmcf.v16i87.1510

Keywords:

Aptitud ambiental, descriptores ecológicos, Guazuma ulmifolia Lam.,, MaxEnt, modelos de distribución, Siamexca

Abstract

Guazuma ulmifolia grows in tropical and warm-humid areas of Latin America. It has good forage qualities and is fast-growing; it offers palatable leaves, good nutritional quality for livestock and the ability to produce forage and fruits during the dry season. The objective of this study was to model the areas with probable environmental suitability and the possible modifications due to climate change for Guazuma ulmifolia in Mexico. Using MaxEnt, and based on 25 bioclimatic variables and images of altitude, slope and soil texture, the distribution of the species was modeled for 1961-2010 (reference climatology) and for 2041-2060 (2050). The climatic data for the first period were obtained from the Agroclimatic Information System (Siamexca), and for the future scenario (2050) an ensemble model was used, derived from eleven general circulation models from WorldClim. The results showed that the variables that contribute most to the environmental suitability of the species are the extreme minimum temperature, the precipitation of the warmest quarter, the thermal oscillation and the maximum temperature of summer; the best areas are located in the Yucatan Peninsula, the Isthmus of Tehuantepec, coastal areas of the Pacific Ocean from Chiapas state to the South of Sonora state and coastal areas of the Gulf of Mexico, from Tabasco state to the South of Tamaulipas state. Climate change will promote a dynamic expansion of areas with high environmental suitability that in the current scenario are of medium environmental suitability, mainly in Central and Northern Mexico.

Downloads

Download data is not yet available.

References

Araujo, P. G., Peixoto A., N. M., Arruda, H. S., Farias, D. de P., Molina, G. & Pastore, G. M. (2019). Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review. Food Research International, 126, 108713. https://doi.org/10.1016/j.foodres.2019.108713 DOI: https://doi.org/10.1016/j.foodres.2019.108713

Araujo, P. G., Arruda, H. S., Rodrigues de M., D., Peixoto A., N. M. & Pastore, G. M. (2020). Mutamba (Guazuma ulmifolia Lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chemistry, 310, Article 125857. https://doi.org/10.1016/j.foodchem.2019.125857 DOI: https://doi.org/10.1016/j.foodchem.2019.125857

Benton, M. J., Wilf, P. & Sauquet, H. (2022). The angiosperm terrestrial revolution and the origins of modern biodiversity. New Phitologist, 233(5), 2017-2035. https://doi.org/10.1111/nph.17822 DOI: https://doi.org/10.1111/nph.17822

Camacho-Portocarrero, R. F., Duarte-Gándica, I. y Altamiranda-Saavedra, M. (2021). Áreas en riesgo de invasión por Procambarus clarkii (Decapoda:Cambaridae) un cangrejo de río introducido en Colombia. Revista de Biología Tropical, 69(1), 77-89. https://doi:10.15517/rbt.v69i1.41493 DOI: https://doi.org/10.15517/rbt.v69i1.41493

Casanova-Lugo, F., Petit-Aldana, J., Solorio-Sánchez, F. J., Parsons, D. & Ramírez-Áviles, L. (2014). Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder banks systems in Yucatan, Mexico. Agroforestry Systems, 88, 29-39. https://doi.org/10.1007/s10457-013-9652-7 DOI: https://doi.org/10.1007/s10457-013-9652-7

Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. (2019). Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, Article e6281. https://doi.org/10.7717/peerj.6281 DOI: https://doi.org/10.7717/peerj.6281

Comisión Nacional Forestal. (2018). Inventario Nacional Forestal y de Suelos. Informe de Resultados 2009-2014 (1a Edición). Comisión Nacional Forestal https://old-snigf.cnf.gob.mx/wp-content/uploads/Resultados%20Hist%C3%B3ricos%20INFyS/2009%20-%202014/Informe%20de%20resultados/Informe%20inventario%202009%20-%202014.pdf

Eastman, J. R. (2012). IDRISI: Guía para SIG y procesamiento de imágenes. Clark Labs, Clark University. https://clarklabs.org/wp-content/uploads/2016/10/IDRISI-Selva-Spanish-Manual.pdf

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.0072 DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x

Environmental Systems Research Institute. (2013). ArcGIS Desktop: Release 10.2.0.3348. ESRI. http://www.esri.com

Food and Agriculture Organization of the United Nations (2022). ECOCROP. Database of Crop Constraints and Characteristics. GAEZ Data Portal. https://gaez.fao.org/pages/ecocrop

Gerber, D., Topanotti, L. R., Romero G., M., Corrêa V., F. M., Stolarski, O. C., Nicoletti, M. F. & Campanhã B., F. (2020). Performance of Guazuma ulmifolia Lam. in subtropical forest restoration. Scientia Forestalis, 48(127), Article e3045. https://www.ipef.br/publicacoes/scientia/nr127/2318-1222-scifor-48-127-e3045.pdf DOI: https://doi.org/10.18671/scifor.v48n127.07

Gutiérrez, E. y Trejo, I. (2014). Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad, 85(1), 179-188. https://doi.org/10.7550/rmb.37737 DOI: https://doi.org/10.7550/rmb.37737

Hebbar, K. B., Abhin, P. S., Sanjo J., V., Neethu, P., Santhosh, A., Shil, S. & Prasad, P. V. V. (2022). Predicting the potential suitable climate for coconut (Cocos nucifera L.) cultivation in India under climate change scenarios using the MaxEnt model. Plants, 11(6), 731. https://doi.org/10.3390/plants11060731 DOI: https://doi.org/10.3390/plants11060731

Hof, C. (2010). Species distributions and climate change: current patterns and future scenarios for biodiversity [Doctoral thesis, University of Copenhagen]. YUMPU. https://www.yumpu.com/en/document/view/28454797/species-distributions-and-climate-change-biologisk-institut

Jiménez R., E. R., Fonseca G., W. y Pazmiño P., L. (2019). Sistemas silvopastoriles y cambio climático: Estimación y predicción de biomasa arbórea. La Granja: Revista de Ciencias de la Vida, 29(1), 45-55. https://doi.org/10.17163/lgr.n29.2019.04 DOI: https://doi.org/10.17163/lgr.n29.2019.04

Kumar, N. S. & Gurunani, S. G. (2019). Guazuma ulmifolia Lam.: A review for future view. Journal of Medicinal Plants Studies, 7(2), 205-210. https://www.plantsjournal.com/archives/2019/vol7issue2/PartC/7-2-29-548.pdf

López-Mata, L., Villaseñor, J. L., Cruz-Cárdenas, G., Ortiz, E. y Ortiz-Solorio, C. (2012). Predictores ambientales de la riqueza de especies de plantas del bosque húmedo de montaña de México. Botanical Sciences, 90(1), 27-36. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-42982012000100004 DOI: https://doi.org/10.17129/botsci.383

Manríquez-Mendoza, L. Y., López-Ortíz, S., Pérez-Hernández, P., Ortega-Jiménez, E., López-Tecpoyotl, Z. G. & Villarruel-Fuentes, M. (2011). Agronomic and forage characteristics of Guazuma ulmifolia Lam. Tropical and Subtropical Agroecosystems, 14, 453-463. https://www.scielo.org.mx/pdf/tsa/v14n2/v14n2a1.pdf

Martínez, J. y Sánchez, J. A. (2016). Incremento de la germinación en semillas de Guazuma ulmifolia (Malvaceae) por ciclos de hidratación-deshidratación y fluctuaciones en la temperatura. Acta Botánica Cubana, 215(3), 352-360. https://revistasgeotech.com/index.php/abc/article/view/147

Matulevich P., J. y García R., J. (2016). Composición Química del aceite esencial de hojas de Guazuma ulmifolia (Malvaceae). Scientia et Technica, 21(3), 269-272. https://www.redalyc.org/pdf/849/84950585010.pdf DOI: https://doi.org/10.22517/23447214.13061

Mayren-Mendoza, F. J., Rojas-García, A. R., Maldonado-Peralta, M. A., Ramírez-Reynoso, O., Herrera-Pérez, J., Torres-Salado, N., Sánchez-Santillán, P., Bottini-Luzardo, M. B. & Hernández-Garay, A. (2018). Comportamiento productivo de ovinos Pelibuey en pastoreo suplementados con follaje de Guazuma ulmifolia Lam. Agroproductividad, 11(5), 29-33. https://ri.uagro.mx/bitstream/handle/uagro/1345/AT_14241_18.pdf?sequence=1&isAllowed=y DOI: https://doi.org/10.15174/au.2019.2202

Monterrubio-Rico, T. C., Charre-Medellín, J. F., Pacheco-Figueroa, C., Arriaga-Weiss, S., Valdez-Leal, J. de D., Cancino-Murillo, R., Escalona-Segura, G., Bonilla-Ruíz, C. y Rubio-Rocha, Y. (2016). Distribución potencial histórica y contemporánea de la familia Psittacidae en México. Revista Mexicana de Biodiversidad, 87(3), 1103-1117. https://doi.org/10.1016/j.rmb.2016.06.004 DOI: https://doi.org/10.1016/j.rmb.2016.06.004

Moreno, R., Zamora, R., Molina, J. R., Vásquez, A. & Herrera, M. A (2011). Predictive modeling of microhabitats for endemic birds in South Chilean temperate forest using Maximum entropy (Maxent). Ecological Informatics, 6(6), 364-370. https://www.sciencedirect.com/science/article/pii/S1574954111000574 DOI: https://doi.org/10.1016/j.ecoinf.2011.07.003

Navarro-Martínez, A., Ellis, E. A., Hernández-Gómez, I., Romero-Montero, J. A. & Sánchez-Sánchez, O. (2018). Distribution and abundance of big-leaf mahogany (Swietenia macrophylla) on the Yucatan Peninsula, Mexico. Tropical Conservation Science, 11, 1-17. https://doi.org/10.1177/1940082918766875 DOI: https://doi.org/10.1177/1940082918766875

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 DOI: https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Quesada-Quirós, M., Acosta-Vargas, L. G., Arias-Aguilar, D. y Rodríguez-González, A. (2017). Modelación de nichos ecológicos basado en tres escenarios de cambio climático para cinco especies de plantas en zonas altas de Costa Rica. Revista Forestal Mesoamericana Kurú, 14(34), 1-12. https://www.researchgate.net/publication/316448650_Modelacion_de_nichos_ecologicos_basado_en_tres_escenarios_de_cambio_climatico_para_cinco_especies_de_plantas_en_zonas_altas_de_Costa_Rica DOI: https://doi.org/10.18845/rfmk.v14i34.2991

R Core Team. (2023). Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Ramírez-Magil, G., Botello, F. y Navarro-Martínez, A. (2020). Idoneidad de hábitat para Swietenia macrophylla en escenarios de cambio climático en México. Madera y Bosques, 26(3), Artículo e2631954. https://doi.org/10.21829/myb.2020.2631954 DOI: https://doi.org/10.21829/myb.2020.2631954

Rojas-Hernández, S., Olivares-Pérez, J., Aviles-Nova, F., Villa-Mancera, A., Reynoso-Palomar, A. & Camacho-Díaz, L. M. (2015). Productive response of lambs fed Crescentia alata and Guazuma ulmifolia fruits in a tropical region of Mexico. Tropical Animal Health and Production, 47,1431-1436. https://doi.org/10.1007/s11250-015-0874-8 DOI: https://doi.org/10.1007/s11250-015-0874-8

Ruiz-Corral, J. A., Medina-García, G., Rodríguez-Moreno, V. M., Sánchez-González, J. de J., Villavicencio G., R., Durán P., N., Grageda G., J. y García R., G. E. (2016). Regionalización del cambio climático en México. Revista Mexicana de Ciencias Agrícolas, (13), 2451-2464. http://www.redalyc.org/pdf/2631/263144472001.pdf

Ruiz-Corral, J. A., Medina-García, G. y García R., G. E. (2018). Sistema de Información Agroclimático para México-Centroamérica. Revista Mexicana de Ciencias Agrícolas, 9(1), 1-10. https://doi.org/10.29312/remexca.v9i1.843 DOI: https://doi.org/10.29312/remexca.v9i1.843

United States Geological Survey. (2017). WorldClim-Global Climate Data. Free climate data for ecological modeling and GIS. WorldClim. https://www.sciencebase.gov/catalog/item/5526ee42e4b026915857c71f

Velázquez-Hernández, J. M., Ruíz-Corral, J. A., Durán-Puga, N., González-Eguiarte, D. R., Santacruz-Ruvalcaba, F., García-Romero, G. E., de la Mora-Castañeda, J. G., Barrera-Sánchez, C. F. & Gallegos-Rodríguez, A. (2023). Eco-Geography of Dioscorea composita (Hemsl.) in México and Central America under the influence of climate change. Sustainability, 15(16), Article 12320. https://doi.org/10.3390/su151612320 DOI: https://doi.org/10.3390/su151612320

Villa-Herrera, A., Nava-Tablada, M. E., López-Ortíz, S., Vargas-López, S., Ortega-Jimenez, E. y López, F. (2009). Utilización del Guácimo (Guazuma ulmifolia) como fuente de forraje en la ganadería bovina extensiva del trópico mexicano. Tropical and Subtropical Agroecosystems, 10, 253-261. https://www.redalyc.org/articulo.oa?id=93912989012

Published

2024-12-19

How to Cite

Durán Puga, Noé, Diego Raymundo González Eguiarte, José Ángel Martínez Sifuentes, and Miguel Prado López. 2024. “Spatial Modeling of Guazuma Ulmifolia Lam. In the Face of Climate Change in Mexico”. Revista Mexicana De Ciencias Forestales 16 (87). México, ME:153-75. https://doi.org/10.29298/rmcf.v16i87.1510.

Issue

Section

Scientific article