Spatial modeling of Guazuma ulmifolia Lam. in the face of climate change in Mexico
DOI:
https://doi.org/10.29298/rmcf.v16i87.1510Keywords:
Aptitud ambiental, descriptores ecológicos, Guazuma ulmifolia Lam.,, MaxEnt, modelos de distribución, SiamexcaAbstract
Guazuma ulmifolia grows in tropical and warm-humid areas of Latin America. It has good forage qualities and is fast-growing; it offers palatable leaves, good nutritional quality for livestock and the ability to produce forage and fruits during the dry season. The objective of this study was to model the areas with probable environmental suitability and the possible modifications due to climate change for Guazuma ulmifolia in Mexico. Using MaxEnt, and based on 25 bioclimatic variables and images of altitude, slope and soil texture, the distribution of the species was modeled for 1961-2010 (reference climatology) and for 2041-2060 (2050). The climatic data for the first period were obtained from the Agroclimatic Information System (Siamexca), and for the future scenario (2050) an ensemble model was used, derived from eleven general circulation models from WorldClim. The results showed that the variables that contribute most to the environmental suitability of the species are the extreme minimum temperature, the precipitation of the warmest quarter, the thermal oscillation and the maximum temperature of summer; the best areas are located in the Yucatan Peninsula, the Isthmus of Tehuantepec, coastal areas of the Pacific Ocean from Chiapas state to the South of Sonora state and coastal areas of the Gulf of Mexico, from Tabasco state to the South of Tamaulipas state. Climate change will promote a dynamic expansion of areas with high environmental suitability that in the current scenario are of medium environmental suitability, mainly in Central and Northern Mexico.
Downloads
References
Araujo, P. G., Peixoto A., N. M., Arruda, H. S., Farias, D. de P., Molina, G. & Pastore, G. M. (2019). Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review. Food Research International, 126, 108713. https://doi.org/10.1016/j.foodres.2019.108713 DOI: https://doi.org/10.1016/j.foodres.2019.108713
Araujo, P. G., Arruda, H. S., Rodrigues de M., D., Peixoto A., N. M. & Pastore, G. M. (2020). Mutamba (Guazuma ulmifolia Lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chemistry, 310, Article 125857. https://doi.org/10.1016/j.foodchem.2019.125857 DOI: https://doi.org/10.1016/j.foodchem.2019.125857
Benton, M. J., Wilf, P. & Sauquet, H. (2022). The angiosperm terrestrial revolution and the origins of modern biodiversity. New Phitologist, 233(5), 2017-2035. https://doi.org/10.1111/nph.17822 DOI: https://doi.org/10.1111/nph.17822
Camacho-Portocarrero, R. F., Duarte-Gándica, I. y Altamiranda-Saavedra, M. (2021). Áreas en riesgo de invasión por Procambarus clarkii (Decapoda:Cambaridae) un cangrejo de río introducido en Colombia. Revista de Biología Tropical, 69(1), 77-89. https://doi:10.15517/rbt.v69i1.41493 DOI: https://doi.org/10.15517/rbt.v69i1.41493
Casanova-Lugo, F., Petit-Aldana, J., Solorio-Sánchez, F. J., Parsons, D. & Ramírez-Áviles, L. (2014). Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder banks systems in Yucatan, Mexico. Agroforestry Systems, 88, 29-39. https://doi.org/10.1007/s10457-013-9652-7 DOI: https://doi.org/10.1007/s10457-013-9652-7
Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. (2019). Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7, Article e6281. https://doi.org/10.7717/peerj.6281 DOI: https://doi.org/10.7717/peerj.6281
Comisión Nacional Forestal. (2018). Inventario Nacional Forestal y de Suelos. Informe de Resultados 2009-2014 (1a Edición). Comisión Nacional Forestal https://old-snigf.cnf.gob.mx/wp-content/uploads/Resultados%20Hist%C3%B3ricos%20INFyS/2009%20-%202014/Informe%20de%20resultados/Informe%20inventario%202009%20-%202014.pdf
Eastman, J. R. (2012). IDRISI: Guía para SIG y procesamiento de imágenes. Clark Labs, Clark University. https://clarklabs.org/wp-content/uploads/2016/10/IDRISI-Selva-Spanish-Manual.pdf
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.0072 DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x
Environmental Systems Research Institute. (2013). ArcGIS Desktop: Release 10.2.0.3348. ESRI. http://www.esri.com
Food and Agriculture Organization of the United Nations (2022). ECOCROP. Database of Crop Constraints and Characteristics. GAEZ Data Portal. https://gaez.fao.org/pages/ecocrop
Gerber, D., Topanotti, L. R., Romero G., M., Corrêa V., F. M., Stolarski, O. C., Nicoletti, M. F. & Campanhã B., F. (2020). Performance of Guazuma ulmifolia Lam. in subtropical forest restoration. Scientia Forestalis, 48(127), Article e3045. https://www.ipef.br/publicacoes/scientia/nr127/2318-1222-scifor-48-127-e3045.pdf DOI: https://doi.org/10.18671/scifor.v48n127.07
Gutiérrez, E. y Trejo, I. (2014). Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Revista Mexicana de Biodiversidad, 85(1), 179-188. https://doi.org/10.7550/rmb.37737 DOI: https://doi.org/10.7550/rmb.37737
Hebbar, K. B., Abhin, P. S., Sanjo J., V., Neethu, P., Santhosh, A., Shil, S. & Prasad, P. V. V. (2022). Predicting the potential suitable climate for coconut (Cocos nucifera L.) cultivation in India under climate change scenarios using the MaxEnt model. Plants, 11(6), 731. https://doi.org/10.3390/plants11060731 DOI: https://doi.org/10.3390/plants11060731
Hof, C. (2010). Species distributions and climate change: current patterns and future scenarios for biodiversity [Doctoral thesis, University of Copenhagen]. YUMPU. https://www.yumpu.com/en/document/view/28454797/species-distributions-and-climate-change-biologisk-institut
Jiménez R., E. R., Fonseca G., W. y Pazmiño P., L. (2019). Sistemas silvopastoriles y cambio climático: Estimación y predicción de biomasa arbórea. La Granja: Revista de Ciencias de la Vida, 29(1), 45-55. https://doi.org/10.17163/lgr.n29.2019.04 DOI: https://doi.org/10.17163/lgr.n29.2019.04
Kumar, N. S. & Gurunani, S. G. (2019). Guazuma ulmifolia Lam.: A review for future view. Journal of Medicinal Plants Studies, 7(2), 205-210. https://www.plantsjournal.com/archives/2019/vol7issue2/PartC/7-2-29-548.pdf
López-Mata, L., Villaseñor, J. L., Cruz-Cárdenas, G., Ortiz, E. y Ortiz-Solorio, C. (2012). Predictores ambientales de la riqueza de especies de plantas del bosque húmedo de montaña de México. Botanical Sciences, 90(1), 27-36. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-42982012000100004 DOI: https://doi.org/10.17129/botsci.383
Manríquez-Mendoza, L. Y., López-Ortíz, S., Pérez-Hernández, P., Ortega-Jiménez, E., López-Tecpoyotl, Z. G. & Villarruel-Fuentes, M. (2011). Agronomic and forage characteristics of Guazuma ulmifolia Lam. Tropical and Subtropical Agroecosystems, 14, 453-463. https://www.scielo.org.mx/pdf/tsa/v14n2/v14n2a1.pdf
Martínez, J. y Sánchez, J. A. (2016). Incremento de la germinación en semillas de Guazuma ulmifolia (Malvaceae) por ciclos de hidratación-deshidratación y fluctuaciones en la temperatura. Acta Botánica Cubana, 215(3), 352-360. https://revistasgeotech.com/index.php/abc/article/view/147
Matulevich P., J. y García R., J. (2016). Composición Química del aceite esencial de hojas de Guazuma ulmifolia (Malvaceae). Scientia et Technica, 21(3), 269-272. https://www.redalyc.org/pdf/849/84950585010.pdf DOI: https://doi.org/10.22517/23447214.13061
Mayren-Mendoza, F. J., Rojas-García, A. R., Maldonado-Peralta, M. A., Ramírez-Reynoso, O., Herrera-Pérez, J., Torres-Salado, N., Sánchez-Santillán, P., Bottini-Luzardo, M. B. & Hernández-Garay, A. (2018). Comportamiento productivo de ovinos Pelibuey en pastoreo suplementados con follaje de Guazuma ulmifolia Lam. Agroproductividad, 11(5), 29-33. https://ri.uagro.mx/bitstream/handle/uagro/1345/AT_14241_18.pdf?sequence=1&isAllowed=y DOI: https://doi.org/10.15174/au.2019.2202
Monterrubio-Rico, T. C., Charre-Medellín, J. F., Pacheco-Figueroa, C., Arriaga-Weiss, S., Valdez-Leal, J. de D., Cancino-Murillo, R., Escalona-Segura, G., Bonilla-Ruíz, C. y Rubio-Rocha, Y. (2016). Distribución potencial histórica y contemporánea de la familia Psittacidae en México. Revista Mexicana de Biodiversidad, 87(3), 1103-1117. https://doi.org/10.1016/j.rmb.2016.06.004 DOI: https://doi.org/10.1016/j.rmb.2016.06.004
Moreno, R., Zamora, R., Molina, J. R., Vásquez, A. & Herrera, M. A (2011). Predictive modeling of microhabitats for endemic birds in South Chilean temperate forest using Maximum entropy (Maxent). Ecological Informatics, 6(6), 364-370. https://www.sciencedirect.com/science/article/pii/S1574954111000574 DOI: https://doi.org/10.1016/j.ecoinf.2011.07.003
Navarro-Martínez, A., Ellis, E. A., Hernández-Gómez, I., Romero-Montero, J. A. & Sánchez-Sánchez, O. (2018). Distribution and abundance of big-leaf mahogany (Swietenia macrophylla) on the Yucatan Peninsula, Mexico. Tropical Conservation Science, 11, 1-17. https://doi.org/10.1177/1940082918766875 DOI: https://doi.org/10.1177/1940082918766875
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 DOI: https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
Quesada-Quirós, M., Acosta-Vargas, L. G., Arias-Aguilar, D. y Rodríguez-González, A. (2017). Modelación de nichos ecológicos basado en tres escenarios de cambio climático para cinco especies de plantas en zonas altas de Costa Rica. Revista Forestal Mesoamericana Kurú, 14(34), 1-12. https://www.researchgate.net/publication/316448650_Modelacion_de_nichos_ecologicos_basado_en_tres_escenarios_de_cambio_climatico_para_cinco_especies_de_plantas_en_zonas_altas_de_Costa_Rica DOI: https://doi.org/10.18845/rfmk.v14i34.2991
R Core Team. (2023). Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramírez-Magil, G., Botello, F. y Navarro-Martínez, A. (2020). Idoneidad de hábitat para Swietenia macrophylla en escenarios de cambio climático en México. Madera y Bosques, 26(3), Artículo e2631954. https://doi.org/10.21829/myb.2020.2631954 DOI: https://doi.org/10.21829/myb.2020.2631954
Rojas-Hernández, S., Olivares-Pérez, J., Aviles-Nova, F., Villa-Mancera, A., Reynoso-Palomar, A. & Camacho-Díaz, L. M. (2015). Productive response of lambs fed Crescentia alata and Guazuma ulmifolia fruits in a tropical region of Mexico. Tropical Animal Health and Production, 47,1431-1436. https://doi.org/10.1007/s11250-015-0874-8 DOI: https://doi.org/10.1007/s11250-015-0874-8
Ruiz-Corral, J. A., Medina-García, G., Rodríguez-Moreno, V. M., Sánchez-González, J. de J., Villavicencio G., R., Durán P., N., Grageda G., J. y García R., G. E. (2016). Regionalización del cambio climático en México. Revista Mexicana de Ciencias Agrícolas, (13), 2451-2464. http://www.redalyc.org/pdf/2631/263144472001.pdf
Ruiz-Corral, J. A., Medina-García, G. y García R., G. E. (2018). Sistema de Información Agroclimático para México-Centroamérica. Revista Mexicana de Ciencias Agrícolas, 9(1), 1-10. https://doi.org/10.29312/remexca.v9i1.843 DOI: https://doi.org/10.29312/remexca.v9i1.843
United States Geological Survey. (2017). WorldClim-Global Climate Data. Free climate data for ecological modeling and GIS. WorldClim. https://www.sciencebase.gov/catalog/item/5526ee42e4b026915857c71f
Velázquez-Hernández, J. M., Ruíz-Corral, J. A., Durán-Puga, N., González-Eguiarte, D. R., Santacruz-Ruvalcaba, F., García-Romero, G. E., de la Mora-Castañeda, J. G., Barrera-Sánchez, C. F. & Gallegos-Rodríguez, A. (2023). Eco-Geography of Dioscorea composita (Hemsl.) in México and Central America under the influence of climate change. Sustainability, 15(16), Article 12320. https://doi.org/10.3390/su151612320 DOI: https://doi.org/10.3390/su151612320
Villa-Herrera, A., Nava-Tablada, M. E., López-Ortíz, S., Vargas-López, S., Ortega-Jimenez, E. y López, F. (2009). Utilización del Guácimo (Guazuma ulmifolia) como fuente de forraje en la ganadería bovina extensiva del trópico mexicano. Tropical and Subtropical Agroecosystems, 10, 253-261. https://www.redalyc.org/articulo.oa?id=93912989012

Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ciencias Forestales

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors who publish in Revista Mexicana de Ciencias Forestales accept the following conditions:
In accordance with copyright laws, Revista Mexicana de Ciencias Forestales recognizes and respects the authors’ moral right and ownership of property rights which will be transferred to the journal for dissemination in open access.
All the texts published by Revista Mexicana de Ciencias Forestales –with no exception– are distributed under a Creative Commons License Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which allows third parties to use the publication as long as the work’s authorship and its first publication in this journal are mentioned
The author(s) can enter into independent and additional contractual agreements for the nonexclusive distribution of the version of the article published in Revista Mexicana de Ciencias Forestales (for example, include it into an institutional repository or publish it in a book) as long as it is clearly and explicitly indicated that the work was published for the first time in Revista Mexicana de Ciencias Forestales.
For all the above, the authors shall send the form of Letter-transfer of Property Rights for the first publication duly filled in and signed by the author(s). This form must be sent as a PDF file to: ciencia.forestal2@inifap.gob.mx
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International license.