Additive equations systems for inventories of the green weight of Brahea dulcis (Kunth) Mart. aboveground biomass

Authors

DOI:

https://doi.org/10.29298/rmcf.v16i91.1548

Keywords:

Diámetro de copa,, modelos alométricos, palma dulce, producto forestal no maderable, peso de velilla, propiedad de aditividad

Abstract

The immature, folded leaf (spear) of the palm tree (Brahea dulcis) is an important non-timber forest product (NTFP) used by indigenous communities in the semi-arid regions of Puebla, Mexico. However, there is a lack of biometric tools to quantify the green weight of its biomass. Additive equations systems (AES) were developed to estimate the green weight of aboveground biomass by structural component and the total green weight of B. dulcis mature individual specimens. 42 specimens were collected using destructive sampling; for each standing individual, the stem diameter (D; cm) was measured at a height of 20 cm above the ground; the total height (TH; m) and the crown diameter (CD; m) were also measured. The specimens were subsequently felled and separated into components (stem, petioles, green leaves, and spear), and their respective green weights (SW, PW, GLW, and SpW; kg) were recorded. The total green weight (TGW) per individual was obtained by adding the weights of its components. Four AES were evaluated, using as a base model the potential allometric function Y=a·Хβ; the fit was performed using the generalized method of moments. For the best AES selected (R2adj=0.6919 and RMSE=0.8793 kg for TGW), the predictor variables were the combination of THCD, both of which are easy to measure. This AES will enable spear inventories to be carried out in compliance with the Mexican official regulations; furthermore, it is the first palm taxon, an important NTFP, to be documented in a semi-arid zone in specialized scientific literature.

Downloads

Download data is not yet available.

References

Abdullah, S. M. K., Pieroni, A., ul Haq, Z., & Ahmad, Z. (2020). Mazri (Nannorrhops ritchiana (Griff) Aitch.): a remarkable source of manufacturing traditional handicrafts, goods and utensils in Pakistan. Journal of Ethnobiology and Ethnomedicine, 16, Article 45. https://doi.org/10.1186/s13002-020-00394-0 DOI: https://doi.org/10.1186/s13002-020-00394-0

Aguilar, J., Illsley, C., Acosta, J., Gómez, T., Tlacotempa, A., Flores, Á., Flores, J., Miranda, E., Sazoxoteco, D., y Teyuco, E. (2005). Palma soyate: tejiendo el tiempo. En C. López, S. Chanfón y G. Segura (Eds.), La riqueza de los bosques mexicanos más allá de la madera: experiencias de comunidades rurales (pp. 16-23). Secretaría de Medio Ambiente y Recursos Naturales y Centro para la Investigación Forestal Internacional. https://www.cifor.org/publications/pdf_files/Books/BLopez0501S0.pdf

Barrett, C. F., Sinn, B. T., King, L. T., Medina, J. C., Bacon, C. D., Lahmeyer, S. C., & Hodel, D. R. (2019). Phylogenomics, biogeography and evolution in the American genus Brahea (Arecaceae). Botanical Journal of the Linnean Society, 190(3), 242-259. https://doi.org/10.1093/botlinnean/boz015 DOI: https://doi.org/10.1093/botlinnean/boz015

Bi, H., Murphy, S., Volkova, L., Weston, C., Fairman, T., Li, Y., Law, R., Norris, J., Lei, X., & Caccamo, G. (2015). Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. Forest Ecology and Management, 349, 106-121. https://doi.org/10.1016/j.foreco.2015.03.007 DOI: https://doi.org/10.1016/j.foreco.2015.03.007

Bocko, Y. E., Panzou, G. J. L., Dargie, G. C., Mampouya, Y. E. W., Mbemba, M., Loumeto, J. J., & Lewis, S. L. (2023). Allometric equation for Raphia Laurentii De Wild, the commonest palm in the Central Congo peatlands. PLoS One, 18(4), Article e0273591. https://doi.org/10.1371/journal.pone.0273591 DOI: https://doi.org/10.1371/journal.pone.0273591

Chen, X., Xie, D., Zhang, Z., Sharma, R. P., Chen, Q., Liu, Q., & Fu, L. (2023). Compatible biomass model with measurement error using airborne LiDAR data. Remote Sensing, 15(14), 3546. https://doi.org/10.3390/rs15143546 DOI: https://doi.org/10.3390/rs15143546

Cui, Y., Bi, H., Liu, S., Hou, G., Wang, N., Ma, X., Zhao, D., Wang, S., & Yun, H. (2020). Developing additive systems of biomass equations for Robinia pseudoacacia L. in the region of loess plateau of Western Shanxi Province, China. Forests, 11(12), Article 1332. https://doi.org/10.3390/f11121332 DOI: https://doi.org/10.3390/f11121332

Das, M., Nath, P. C., Sileshi, G. W., Pandey, R., Nath, A. J., & Das, A. K. (2021). Biomass models for estimating carbon storage in Areca palm plantations. Environmental and Sustainability Indicators, 10, Article 100115. https://doi.org/10.1016/j.indic.2021.100115 DOI: https://doi.org/10.1016/j.indic.2021.100115

Dong, L., Zhang, Y., Zhang, Z., Xie, L., & Li, F. (2020). Comparison of tree biomass modeling approaches for Larch (Larix olgensis Henry) trees in Northeast China. Forests, 11(2), 202. https://doi.org/10.3390/f11020202 DOI: https://doi.org/10.3390/f11020202

Falen, L., Guedes, M., de Castilho, C. V., Jorge, R. F., Bezerra, F. M., & Magnusson, W. E. (2023). Palm live aboveground biomass in the riparian zones of a forest in Central Amazonia. Biotropica, 55(3), 639-649. https://doi.org/10.1111/btp.13215 DOI: https://doi.org/10.1111/btp.13215

Fu, L., Lei, Y., Wang, G., Bi, H., Tang, S., & Song, X. (2016). Comparison of seemingly unrelated regressions with error-in-variable models for developing a system of nonlinear additive biomass equations. Trees, 30, 839-857. https://doi.org/10.1007/s00468-015-1325-x DOI: https://doi.org/10.1007/s00468-015-1325-x

Goodman, R. C., Phillips, O. L., del Castillo-Torres, D., Freitas, L., Tapia-Cortese, S., Monteagudo, A., & Baker, T. R. (2013). Amazon palm biomass and allometry. Forest Ecology and Management, 310, 994-1004. https://doi.org/10.1016/j.foreco.2013.09.045 DOI: https://doi.org/10.1016/j.foreco.2013.09.045

Han, Z., Jin, W., Li, L., Wang, X., Bai, X., & Wang, H. (2020). Nonlinear regression color correction method for RGBN cameras. IEEE Access, 8, 25914-25926. https://doi.org/10.1109/ACCESS.2020.2971423 DOI: https://doi.org/10.1109/ACCESS.2020.2971423

Huy, B., Khiem, N. Q., Truong, N. Q., Poudel, K. P., & Temesgen, H. (2023). Additive modeling systems to simultaneously predict aboveground biomass and carbon for Litsea glutinosa of agroforestry model in tropical highlands. Forest Systems, 32(1), Article e006. https://doi.org/10.5424/fs/2023321-19780 DOI: https://doi.org/10.5424/fs/2023321-19780

Liu, Y.-H., & Yen, T.-M. (2021). Assessing aboveground carbon storage capacity in bamboo plantations with various species related to its affecting factors across Taiwan. Forest Ecology and Management, 481, Article 118745. https://doi.org/10.1016/j.foreco.2020.118745 DOI: https://doi.org/10.1016/j.foreco.2020.118745

López-Serrano, P. M., Hernández-Ramos, A., Méndez-González, J., Martínez-Salvador, M., Aguirre-Calderón, O., Vargas-Larreta, B., y Corral-Rivas, J. J. (2021). Mejores prácticas de manejo y ecuaciones alométricas de biomasa de Brahea dulcis en el estado de Oaxaca y Guerrero (Proyecto: 2017-4-292674, Conafor-Conacyt). Comisión Nacional Forestal y Consejo Nacional de Ciencia y Tecnología. https://www.gob.mx/cms/uploads/attachment/file/708768/Mejores_practicas_de_Brahea_dulcis__Versi_n_2_.pdf

Martínez-Pérez, A., López, P. A., Gil-Muñoz, A., y Cuevas-Sánchez, J. A. (2012). Plantas silvestres útiles y prioritarias identificadas en la Mixteca Poblana, México. Acta Botánica Mexicana, 98, 73-98. https://doi.org/10.21829/abm98.2012.1141 DOI: https://doi.org/10.21829/abm98.2012.1141

Mohan, K. C., Mason, E. G., Bown, H. E., & Jones, G. (2020). A comparison between traditional ordinary least-squares regression and three methods for enforcing additivity in biomass equations using a sample of Pinus radiata trees. New Zealand Journal of Forestry Science, 50, Article 7. https://doi.org/10.33494/nzjfs502020x90x DOI: https://doi.org/10.33494/nzjfs502020x90x

Ordóñez-Prado, C., Tamarit-Urias, J. C., Nava-Nava, A., & Rodríguez-Acosta, M. (2024). Additive equations system to estimate aboveground biomass by structural component and total of three giant Bamboo species in Mexico. Cerne, 30, Article e-103267. https://doi.org/10.1590/01047760202430013267 DOI: https://doi.org/10.1590/01047760202430013267

Pérez-Valladares, C. X., Moreno-Calles, A. I., Casas, A., Rangel-Landa, S., Blancas, J., Caballero, J., & Velazquez, A. (2020). Ecological, cultural, and geographical implications of Brahea dulcis (Kunth) Mart. insights for sustainable management in Mexico. Sustainability, 12(1), Article 412. https://doi.org/10.3390/su12010412 DOI: https://doi.org/10.3390/su12010412

Pérez-Valladares, C. X., Moreno-Calles, A. I., Mas, J. F., & Velazquez, A. (2022). Species distribution modeling as an approach to studying the processes of landscape domestication in central southern Mexico. Landscape Ecology, 37, 461-476. https://doi.org/10.1007/s10980-021-01365-w DOI: https://doi.org/10.1007/s10980-021-01365-w

Picard, N., Rutishauser, E., Ploton, P., Ngomanda, A., & Henry, M. (2015). Should tree biomass allometry be restricted to power models? Forest Ecology and Management, 353, 156-163. https://doi.org/10.1016/j.foreco.2015.05.035 DOI: https://doi.org/10.1016/j.foreco.2015.05.035

Pulido, M. T., & Coronel-Ortega, M. (2015). Ethnoecology of the palm Brahea dulcis (Kunth) Mart. in central Mexico. Journal of Ethnobiology and Ethnomedicine, 11, Article 1. https://doi.org/10.1186/1746-4269-11-1 DOI: https://doi.org/10.1186/1746-4269-11-1

Pulido-Silva, M. T., Quero, H., Hodel, D., & Lopez-Toledo, L. (2023). Richness, endemism and floristic affinities of the palms of Mexico. The Botanical Review, 89, 250-274. https://doi.org/10.1007/s12229-022-09284-4 DOI: https://doi.org/10.1007/s12229-022-09284-4

Ramos-Escalante, G., Ley de-Coss, A., Arce-Espino, C., Escobar-España, J. C., Raj-Aryal, D., Pinto-Ruiz, R., Guevara-Hernández, F., y Guerra-Medina, C. E. (2018). Ecuaciones alométricas para estimar biomasa y carbono en palma de aceite (Elaeis guineensis Jacq.) en el trópico húmedo de Chiapas, México. Agrociencia, 52(5), 671-683. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1696/1696

Rangel-Landa, S., Casas, A., Rivera-Lozoya, E., Torres-García, I., & Vallejo-Ramos, M. (2016). Ixcatec ethnoecology: plant management and biocultural heritage in Oaxaca, Mexico. Journal of Ethnobiology and Ethnomedicine, 12, Article 30. https://doi.org/10.1186/s13002-016-0101-3 DOI: https://doi.org/10.1186/s13002-016-0101-3

SAS Institute Inc. (2011). SAS/STAT 9.3 User’s Guide. SAS Institute Inc. https://support.sas.com/documentation/onlinedoc/stat/930/

Wang, J., Zhang, L., & Feng, Z. (2018). Allometric equations for the aboveground biomass of five tree species in China using the generalized method of moments. The Forestry Chronicle, 94(3), 214-220. https://pubs.cif-ifc.org/doi/abs/10.5558/tfc2018-034

Xiong, N., Qiao, Y., Ren, H., Zhang, L., Chen, R., & Wang, J. (2023). Comparison of parameter estimation methods based on two additive biomass models with small samples. Forests, 14(8), Article 1655. https://doi.org/10.3390/f14081655 DOI: https://doi.org/10.3390/f14081655

Xu, Z., Du, W., Zhou, G., Qin, L., Meng, S., Yu, J., Sun, Z., SiQing, B., & Liu, Q. (2022). Aboveground biomass allocation and additive allometric models of fifteen tree species in northeast China based on improved investigation methods. Forest Ecology and Management, 505, Article 119918. https://doi.org/10.1016/j.foreco.2021.119918 DOI: https://doi.org/10.1016/j.foreco.2021.119918

Published

2025-09-05

How to Cite

Tamarit Urias, Juan Carlos, Adrián Hernández-Ramos, Casimiro Ordóñez-Prado, Jonathan Hernández-Ramos, and Enrique Buendía Rodríguez. 2025. “Additive Equations Systems for Inventories of the Green Weight of Brahea Dulcis (Kunth) Mart. Aboveground Biomass”. Revista Mexicana De Ciencias Forestales 16 (91). México, ME:46-69. https://doi.org/10.29298/rmcf.v16i91.1548.

Issue

Section

Scientific article