Soil organic carbon stocks along an elevation gradient in mountain forests of Pinus hartwegii Lindl.

Authors

  • Lizbeth Instituto de Ciencias Agropecuarias y Rurales, UAEMex.
  • Dra. Marlín Pérez Suárez Universidad Autónoma del Estado de México
  • J. Jesús Vargas Hernández Colegio de Postgraduados
  • PhD. Philippe Rozenberg INRAE
  • Dr. Arian Correa Díaz

DOI:

https://doi.org/10.29298/rmcf.v16i90.1553

Keywords:

Trees, climate change, elevation gradient, organic matter, logging, herbaceous vegetation

Abstract

High-elevation mountain forests (>2 500 m) play a crucial role in long-term carbon storage. This research aimed to determine how edaphic, climatic, and vegetal variables influence soil organic carbon (SOC) stocks along an elevation gradient in the Pinus hartwegii forest at Nevado de Toluca, Mexico. A total of 140 topsoil samples (0-15 cm depth) were collected at 100 m intervals between 3 400 and 4 000 masl. Soil samples were analyzed to SOC (oxide-reduction method), bulk density (BD; cylinder method), pH, and texture (Bouyoucos method). In addition, climate data, including mean annual temperature and precipitation, were obtained from the ClimateNA model v5.10. Relationships among soil properties, vegetation structure, and climatic variables were analyzed, comparing logged (3 400-3 800 m) and unlogged (3 900-4 000 m) plots. SOC stocks increased linearly with elevation (=0.70; p=0.02), peaking at 4 000 m (173.1±5.2 Mg C ha-1) and reaching a minimum at 3 700 m (146.8±5.72 Mg C ha-1). Higher SOC at 4 000 m was associated with lower temperatures and larger P. hartwegii trees. Findings highlight that SOC stocks vary along the elevation gradient, with reduced decomposition rates at higher elevations promoting accumulation. At lower elevations, logging reduced SOC due to vegetation alterations, disrupting organic matter inputs and microsite conditions. These results suggest that P. hartwegii logging may weaken the role of mountain forest soils in mitigating climate change by accelerating soil organic matter decomposition.

Downloads

Download data is not yet available.

References

Alfaro-Ramírez, F. U., Arredondo-Moreno, J. T., Pérez-Suárez, M., & Endara-Agramont, Á. R. (2017). Pinus hartwegii Lindl. Treeline ecotone: Structure and alti-tudinal limits at Nevado de Toluca, Mexico. Revista Chapingo Serie Ciencias Foresta-les y del Ambiente, 23(2), 261-273. https://doi.org/10.5154/r.rchscfa.2016.10.055 DOI: https://doi.org/10.5154/r.rchscfa.2016.10.055

Becker, J. N., Dippold, M. A., Hemp, A., & Kuzyakov, Y. (2019). Ashes to ashes: Characterization of organic matter in Andosols along a 3400 m elevation transect at Mount Kilimanjaro using analytical pyrolysis. Catena, 180, 271-281. https://doi.org/10.1016/j.catena.2019.04.033 DOI: https://doi.org/10.1016/j.catena.2019.04.033

Berg, B., & Meentemeyer, V. (2002). Litter quality in a north European transect ver-sus carbon storage potential. Plant and Soil, 242, 83-92. https://doi.org/10.1023/A:1019637807021 DOI: https://doi.org/10.1023/A:1019637807021

Bomfim, B., Silva, L. C. R., Pereira, R. S., Gatto, A., Emmert, F., & Higuchi, N. (2020). Litter and soil biogeochemical parameters as indicators of sustainable log-ging in Central Amazonia. Science of the Total Environment, 714, Article 136780. https://doi.org/10.1016/j.scitotenv.2020.136780 DOI: https://doi.org/10.1016/j.scitotenv.2020.136780

Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x

Cepáková, S., & Frouz, J. (2015). Changes in chemical composition of litter during decomposition: a review of published 13C NMR spectra. Journal of Soil Science and Plant Nutrition, 15(3), 805-815. http://dx.doi.org/10.4067/S0718-95162015005000055 DOI: https://doi.org/10.4067/S0718-95162015005000055

Challenger, A. (1998). Utilización y conservación de los ecosistemas terrestres de México: pasado, presente y futuro. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://books.google.com.mx/books/about/Utilizaci%C3%B3n_y_conservaci%C3%B3n_de_los_ecos.html?id=M1RQAAAAYAAJ&redir_esc=y

Chen, G. J. (2012). A simple way to deal with multicollinearity. Journal of Applied Statistics, 39(9), 1893-1909. https://doi.org/10.1080/02664763.2012.690857 DOI: https://doi.org/10.1080/02664763.2012.690857

Chiti, T., Perugini, L., Vespertino, D., & Valentini, R. (2016). Effect of selective log-ging on soil organic carbon dynamics in tropical forests in central and western Afri-ca. Plant and Soil, 399, 283-294. https://doi.org/10.1007/s11104-015-2697-9 DOI: https://doi.org/10.1007/s11104-015-2697-9

Coletta, V., Pellicone, G., Bernardini, V., De Cinti, B., Froio, R., Marziliano, P. A., Matteucci, G., Ricca, N., Turco, R., & Veltri, A. (2017). Short-time effect of harvest-ing methods on soil respiration dynamics in a beech forest in southern Mediterrane-an Italy. iForest-Biogeosciences and Forestry, 10(3), 645-651. https://doi.org/10.3832/ifor2032-010 DOI: https://doi.org/10.3832/ifor2032-010

Comisión Nacional Forestal. (2025). INFYS Inventario Nacional Forestal y de Suelos (INFyS). Gobierno de Máxico. https://snmf.cnf.gob.mx/infys/

Correa-Díaz, A., Silva, L. C. R., Horwath, W. R., Gómez-Guerrero, A., Vargas-Hernández, J., Villanueva-Díaz, J., Velázquez-Martínez, A., & Suárez-Espinoza, J. (2019). Linking Remote Sensing and Dendrochronology to quantify climate-induced shifts in high-elevation forests over space and time. Journal of Geophysical Re-search: Biogeosciences, 124(1), 166-183. https://doi.org/10.1029/2018JG004687 DOI: https://doi.org/10.1029/2018JG004687

Covaleda, S., Gallardo, J. F., Garcia-Oliva, F., Kirchmann, H., Prat, C., Bravo, M., & Etchevers, J. D. (2011). Land-use effects on the distribution of soil organic carbon within particle-size fractions of volcanic soils in the Transmexican Volcanic Belt (Mex-ico). Soil Use and Management, 27(2), 186-194. https://doi.org/10.1111/j.1475-2743.2011.00341.x DOI: https://doi.org/10.1111/j.1475-2743.2011.00341.x

Cruz-Cardenas, G., López-Mata, L., Silva, J. T., Bernal-Santana, N., Estrada-Godoy, F., & López-Sandoval, J. A. (2016). Potential distribution model of Pinaceae species under climate change scenarios in Michoacán. Revista Chapingo Serie Ciencias Fo-restales y del Ambiente, 22(2), 135-148. https://doi.org/10.5154/r.rchscfa.2015.06.027 DOI: https://doi.org/10.5154/r.rchscfa.2015.06.027

Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon de-composition and feedbacks to climate change. Nature, 440, 165-173. https://doi.org/10.1038/nature04514 DOI: https://doi.org/10.1038/nature04514

de la Cruz-Amo, L., Bañares-de-Dios, G., Cala, V., Granzow-de la Cerda, I., Espino-sa, C. I., Ledo, A., Salinas, N., Macía, M. J., & Cayuela, L. (2020). Trade-offs among aboveground, belowground, and soil organic carbon stocks along altitudinal gradi-ents in Andean tropical montane forests. Frontiers in Plant Sciences, 11, 106. https://doi.org/10.3389/fpls.2020.00106 DOI: https://doi.org/10.3389/fpls.2020.00106

Delmelle, P., Opfergelt, S., Cornelis, J.-T., & Ping, C.-L. (2015). Chapter 72-Volcanic Soils. In H. Sigurdsson (Ed.), The Encyclopedia of Volcanoes (2nd ed., pp. 1253-1264). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385938-9.00072-9 DOI: https://doi.org/10.1016/B978-0-12-385938-9.00072-9

Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185-190. https://doi.org/10.1126/science.263.5144.185 DOI: https://doi.org/10.1126/science.263.5144.185

Du, B., Kang, H., Pumpanen, J., Zhu, P., Yin, S., Zou, Q., Wang, Z., Kong, F., & Liu, C. (2014). Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China. Ecological Research, 29(3), 433-439. https://doi.org/10.1007/s11284-014-1135-4 DOI: https://doi.org/10.1007/s11284-014-1135-4

Elliot, E. T., Heil, J. W., Kelly, E. F., & Monger, H. C. (1999). 4 Soil structural and other physical properties. In G. P. Robertson, D. C. Coleman, C. S. Bledsoe & P. Sollins (Eds.), Standard soil methods for long-term ecological research (pp. 74-86). Oxford University Press. https://doi.org/10.1093/oso/9780195120837.003.0004 DOI: https://doi.org/10.1093/oso/9780195120837.003.0004

Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., Maccracken, S., Mastrandrea, P. R., & White, L. L. (Eds.). (2014). Cli-mate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sec-toral Aspects. Working group II contribution to the fifth assessment report of inter-governmental panel on climate change. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-FrontMatterA_FINAL.pdf DOI: https://doi.org/10.1017/CBO9781107415379

Franco M., S., Regil G., H. H., y Ordóñez D., J. A. B. (2006). Dinámica de perturba-ción-recuperación de las zonas forestales en el Parque Nacional Nevado de Toluca. Madera y Bosques, 12(1), 17-28. https://doi.org/10.21829/myb.2006.1211247 DOI: https://doi.org/10.21829/myb.2006.1211247

García, E. (1990). Carta de climas. Atlas Nacional de México. Universidad Nacional Autónoma de México.

Garten Jr., C. T., & Hanson, P. J. (2006). Measured forest soil C stocks and estimat-ed turnover times along an elevation gradient. Geoderma, 136(1-2), 342-352. https://doi.org/10.1016/j.geoderma.2006.03.049 DOI: https://doi.org/10.1016/j.geoderma.2006.03.049

Gómez-Mendoza, L., & Arriaga, L. (2007). Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conservation Biology, 21(6), 1545-1555. https://doi.org/10.1111/j.1523-1739.2007.00814.x DOI: https://doi.org/10.1111/j.1523-1739.2007.00814.x

Jafari, S. M., Zarre, S., & Alavipanah, S. K. (2013). Woody species diversity and forest structure from lowland to Montane Forest in Hyrcanian Forest Ecorregion. Journal of Mountain Science, 10(4), 609-620. https://doi.org/10.1007/s11629-013-2652-2 DOI: https://doi.org/10.1007/s11629-013-2652-2

James, J., & Harrison, R. (2016). The effect of harvest on forest soil carbon: A me-ta-analysis. Forests, 7, 308. https://doi.org/10.3390/f7120308 DOI: https://doi.org/10.3390/f7120308

Kirschbaum, M. U. F. (2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48, 21-51. https://doi.org/10.1023/A:1006238902976 DOI: https://doi.org/10.1023/A:1006238902976

Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569-574. https://doi.org/10.1016/j.tree.2007.09.006 DOI: https://doi.org/10.1016/j.tree.2007.09.006

Körner, C., & Paulsen, J. (2004). A world-wide study of high altitude treeline tem-peratures. Journal of Biogeography, 31(5), 713-732. http://dx.doi.org/10.1111/j.1365-2699.2003.01043.x DOI: https://doi.org/10.1111/j.1365-2699.2003.01043.x

Kumar, S., Lal, R., & Lloyd, C. D. (2012). Assessing spatial variability in soil charac-teristics with geographically weighted principal components analysis. Computational Geosciences, 16, 827-835. https://doi.org/10.1007/s10596-012-9290-6 DOI: https://doi.org/10.1007/s10596-012-9290-6

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied Linear Statistical Models (5th ed.). McGraw-Hill Irwin. https://www.researchgate.net/publication/344587293_Applied_Linear_Statistical_Models

Lukac, M., & Godbold, D. L. (2011). Soil ecology in Northern forests. A belowground view of a changing world. Cambridge University Press. https://doi.org/10.1017/CBO9780511976100 DOI: https://doi.org/10.1017/CBO9780511976100

Msanya, B. M., Otsuka, H., Araki, S., & Fujitake, N. (2007). Characterization of vol-canic ash soils in southwestern Tanzania: Morphology, physicochemical properties, and classification. African Study Monographs, Supplementary Issue 34, 39-55. http://hdl.handle.net/2433/68484

Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857-866. https://doi.org/10.1016/j.foreco.2009.12.009 DOI: https://doi.org/10.1016/j.foreco.2009.12.009

Neall, V. E. (2006). Volcanic Soils. In W. H. Verheye (Ed.), Encyclopedia of land use, land cover and soil sciences. Soils and soil Sciences. Vol. VII Encyclopedia of Life Support Systems (pp. 23-48). United Nations Educational, Scientific and Cultural Organization. https://edepot.wur.nl/484591

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2008). Base referencial mundial del recurso suelo. Un marco conceptual para clasificación, correlación y comunicación internacional (Informe sobre recursos mundiales de suelos 103). Organización de las Naciones Unidas para la Alimentación y la Agricul-tura. https://openknowledge.fao.org/server/api/core/bitstreams/afecdf0d-08a9-4754-8ebd-a8070aa71aea/content

Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., … Yang, D. Q. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424-430. https://doi.org/10.1038/nclimate2563 DOI: https://doi.org/10.1038/nclimate2563

Pérez-Suárez, M., Arredondo-Moreno, J. T., & Huber-Sannwald, E. (2012). Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: the role of rainfall and microsite. Biogeochemistry, 108, 245-258. https://doi.org/10.1007/s10533-011-9594-y DOI: https://doi.org/10.1007/s10533-011-9594-y

Price, M. F., Gratzer, G., Duguma, L. A., Kohler, T., Maselli, D., Romeo, R. (Edits.). (2011). Mountain forests in a changing world. Realizing values, addressing chal-lenges. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/i2481e/i2481e.pdf

R Core Team. (2017). R: A language and environment for statistical computing (v4.4.3) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/

Robertson, G. P., Sollins, P., Ellis, B. G., & Lajtha, K. (1999). 6 Exchangeable ions, pH, and cation exchange capacity. In G. P. Robertson, D. C. Coleman, C. S. Bledsoe & P. Sollins (Eds.), Standard soil methods for long-term ecological research (pp. 106-114). Oxford University Press. https://doi.org/10.1093/oso/9780195120837.003.0006 DOI: https://doi.org/10.1093/oso/9780195120837.003.0006

Rzedowski, J. (1991). Diversidad y orígenes de la flora fanerogámica de México. Acta Botánica Mexicana, (14), 3-21. https://doi.org/10.21829/abm14.1991.611 DOI: https://doi.org/10.21829/abm14.1991.611

Salinas, N., Malhi, Y., Meir, P., Silman, M., Cuesta, R. R., Huaman, J., Salinas, D., Huaman, V., Gibaja, A., Mamani, M., & Farfan, F. (2011). The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf transloca-tion experiment along an elevation gradient in Peruvian forest. New Phytologist, 189(4), 967-977. https://doi.org/10.1111/j.1469-8137.2010.03521.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03521.x

Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., & Chenu, C. (2010). Carbon dy-namics in topsoil and in subsoil may be controlled by different regulatory mecha-nisms. Global Change Biology, 16(1), 416-426. https://doi.org/10.1111/j.1365-2486.2009.01884.x DOI: https://doi.org/10.1111/j.1365-2486.2009.01884.x

Santini, N. S., Adame, M. F., Nolan, R. H., Miquelajauregui, Y., Piñero, D., Mastret-ta-Yanes, A., Cuervo-Robayo, A. P., & Eamus, D. (2019). Storage of organic carbon in the soils of Mexican temperate forests. Forest Ecology and Management, 446, 115-125. https://doi.org/10.1016/j.foreco.2019.05.029 DOI: https://doi.org/10.1016/j.foreco.2019.05.029

Sheikh, M. A., Kumar, M., & Bussmann, R. W. (2009). Altitudinal variation in soil or-ganic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance and Management, 4, Article 6. https://doi.org/10.1186/1750-0680-4-6 DOI: https://doi.org/10.1186/1750-0680-4-6

Simon, A., Dhendup, K., Rai, P. B., & Gratzer, G. (2018). Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12, 28-38. https://doi.org10.1016/j.geodrs.2017.11.004 DOI: https://doi.org/10.1016/j.geodrs.2017.11.004

Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31. https://doi.org/10.1016/j.still.2004.03.008 DOI: https://doi.org/10.1016/j.still.2004.03.008

Statistical Analysis System. (2004). SAS/STAT® 9.1 User’s Guide. SAS Institute Inc. https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf

Swetnam, T. L., Brooks, P. D., Barnard, H. R., Harpold, A. A., & Gallo, E. L. (2017). Topographically driven differences in energy and water constrain climatic control on forest carbon sequestration. Ecosphere, 8(4), Article e01797. https://doi.org/10.1002/ecs2.1797 DOI: https://doi.org/10.1002/ecs2.1797

Tashi, S., Singh, B., Keitel, C., & Adams, M. (2016). Soil carbon and nitrogen stocks in forest along an altitudinal gradient in the Eastern Himalayas and a meta-analysis of global data. Global Change Biology, 22(6), 2255-2268. https://doi.org/10.1111/gcb.13234 DOI: https://doi.org/10.1111/gcb.13234

Tewksbury, C. E., & Van Miegroet, H. (2007). Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce fir forest. Canadian Journal of Forest Research, 37(7), 1161-1172. https://doi.org/10.1139/X06-317 DOI: https://doi.org/10.1139/X06-317

Tian, Q., He, H., Cheng, W., Bai, Z., Wang, Y., & Zhang, X. (2016). Factors control-ling soil organic carbon stability along a temperate forest altitudinal gradient. Scien-tific Reports, 6, Article 18783. https://doi.org/10.1038/srep18783 DOI: https://doi.org/10.1038/srep18783

Tito, R., Vasconcelos, H. L., & Feeley, K. J. (2020). Mountain ecosystems as natural laboratories for climate change experiments. Frontiers in Forests and Global Change, 3, Article 38. https://doi.org/10.3389/ffgc.2020.00038 DOI: https://doi.org/10.3389/ffgc.2020.00038

United States Department of Agriculture. (2014). Keys to Soil Taxonomy. Natural Resources Conservation Service (12th ed.). United States Department of Agricul-ture and Natural Resources Conservation Service. https://ethz.ch/content/dam/ethz/special-interest/usys/ias/grassland-sciences-dam/documents/Education/Graslandsysteme/2014_USDA_Keys_to_Soil_Taxonomy.pdf

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for de-termining soil organic matter, and a proposed modification of the chromic acid titra-tion method. Soil Science, 37(1), 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003 DOI: https://doi.org/10.1097/00010694-193401000-00003

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, 11(6), Article e0156720. https://doi.org/10.1371/journal.pone.0156720 DOI: https://doi.org/10.1371/journal.pone.0156720

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.-J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026 DOI: https://doi.org/10.1016/j.geoderma.2018.07.026

Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S., & Peng, C. (2010). Altitu-dinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123, 439-452. https://doi.org/10.1007/s10265-009-0301-1 DOI: https://doi.org/10.1007/s10265-009-0301-1

Published

2025-06-30

How to Cite

Lizbeth, Marlín Pérez Suárez, J. Jesús Vargas Hernández, Philippe Rozenberg, and Arian Correa Díaz. 2025. “Soil Organic Carbon Stocks Along an Elevation Gradient in Mountain Forests of Pinus Hartwegii Lindl”. Revista Mexicana De Ciencias Forestales 16 (90). México, ME:87-112. https://doi.org/10.29298/rmcf.v16i90.1553.

Issue

Section

Scientific article